Journal of neurotrauma
-
Journal of neurotrauma · Mar 2017
Detection of Mild Traumatic Brain Injury by Machine Learning Classification using Resting State Functional Network Connectivity and Fractional Anisotropy.
Traumatic brain injury (TBI) may adversely affect a person's thinking, memory, personality, and behavior. While mild TBI (mTBI) diagnosis is challenging, there is a risk for long-term psychiatric, neurologic, and psychosocial problems in some patients that motivates the search for new and better biomarkers. Recently, diffusion magnetic resonance imaging (dMRI) has shown promise in detecting mTBI, but its validity is still being investigated. ⋯ A t test analysis revealed significant increase in rsFNC between cerebellum versus sensorimotor networks and between left angular gyrus versus precuneus in subjects with mTBI. These outcomes suggest that inclusion of both common and unique information is important for classification of mTBI. Results also suggest that rsFNC can yield viable biomarkers that might outperform dMRI and points to connectivity to the cerebellum as an important region for the detection of mTBI.
-
Journal of neurotrauma · Mar 2017
Resuscitation with pooled and pathogen-reduced plasma attenuates the increase in brain water content following traumatic brain injury and hemorrhagic shock in rats.
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. ⋯ Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
-
Journal of neurotrauma · Mar 2017
Electrophysiological Correlates of Word Retrieval in Traumatic Brain Injury.
Persons who have had a traumatic brain injury (TBI) often have word retrieval deficits; however, the underlying neural mechanisms of such deficits are yet to be clarified. Previous studies in normal subjects have shown that during a word retrieval task, there is a 750 msec event-related potential (ERP) divergence detected at the left fronto-temporal region when subjects evaluate word pairs that facilitate retrieval compared with responses elicited by word pairs that do not facilitate retrieval. In this study, we investigated the neurophysiological correlates of word retrieval networks in 19 retired professional athletes with TBI and 19 healthy control (HC) subjects. ⋯ The EEG showed a significant group by condition interaction over the left fronto-temporal region. The HC group mean amplitudes were significantly different between conditions, but the TBI group data did not show this difference, suggesting neurophysiological effects of injury. These findings provide evidence that ERP amplitudes may be used as a marker of disrupted semantic retrieval circuits in persons with TBI even when those persons perform normally.
-
Journal of neurotrauma · Mar 2017
Acute cortical transhemispheric diaschisis after unilateral traumatic brain injury.
Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. ⋯ This abnormal excitable state in the intact hemisphere was not accompanied by alterations in neuronal intrinsic properties, but it was associated with an impairment of the phasic gamma aminobutyric acid (GABA)ergic transmission and an increased expression of GABAA receptor subunits related to tonic inhibition exclusively in the contralateral hemisphere. These data unravel a series of early transhemispheric functional alterations after diffuse unilateral cortical injury, which may compensate and stabilize the disrupted brain functions. Therefore, our findings support the hypothesis that the undamaged hemisphere could play a significant role in early functional reorganization processes after a TBI.
-
Journal of neurotrauma · Mar 2017
Serum neurofilament light protein as a marker for diffuse axonal injury - results from a case series study.
Diffuse axonal injury (DAI) is an important cause of morbidity in patients with traumatic brain injury (TBI). There is currently no simple and reliable technique for early identification of patients with DAI, or to prognosticate long-term outcome in this patient group. In the present study, we examined acute serum concentrations of neurofilament light (NFL) in nine patients with severe TBI and DAI using a novel ultrasensitive single molecule array (Simoa) assay. ⋯ We found that the mean NFL concentrations among the patients displayed a 30-fold increase compared with controls, and that NFL completely discriminated between the patients and controls. We also found a relationship between serum NFL and MR-DTI parameters, with higher NFL concentrations in patients with higher trace (R2 = 0.79) and lower fractional anisotropy (FA) (R 2 = 0.83). These results suggest that serum NFL may be a valuable blood biomarker for TBI, reflecting the severity of DAI.