Journal of neurotrauma
-
Journal of neurotrauma · Jan 2017
Traumatic brain injury causes endothelial dysfunction in the systemic microcirculation through arginase-1-dependent uncoupling of endothelial nitric oxide synthase.
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. ⋯ Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O2- production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
-
Journal of neurotrauma · Jan 2017
TBI induces alterations in cortical glutamate uptake without a reduction in GLT-1 protein expression.
We hypothesize that the primary mechanism for removal of glutamate from the extracellular space is altered after traumatic brain injury (TBI). To evaluate this hypothesis, we initiated TBI in adult male rats using a 2.0 atm lateral fluid percussion injury (LFPI) model. In the ipsilateral cortex and hippocampus, we found no differences in expression of the primary glutamate transporter in the brain (GLT-1) 24 h after TBI. ⋯ Exploratory studies using an inhibitor of Akt suggest selective activation of kinases in LFPI versus controls. Ingenuity pathway analyses of implicated kinases from our network model found apoptosis and cell death pathways as top functions in acute LFPI. Taken together, our data suggest diminished activity of glutamate transporters in the prefrontal cortex, with no changes in protein expression of the primary glutamate transporter GLT-1, and global alterations in signaling networks that include serine-threonine kinases that are known modulators of glutamate transport activity.
-
Journal of neurotrauma · Jan 2017
Comparative StudyStrong correlation of genome-wide expression after traumatic brain injury in vitro and in vivo implicates a role for SORLA.
The utility of in vitro models of traumatic brain injury (TBI) depends on their ability to recapitulate the in vivo TBI cascade. In this study, we used a genome-wide approach to compare changes in gene expression at several time points post-injury in both an in vitro model and an in vivo model of TBI. We found a total of 2073 differentially expressed genes in our in vitro model and 877 differentially expressed genes in our in vivo model when compared to noninjured controls. ⋯ We confirmed downregulation of SORLA expression in organotypic hippocampal slice cultures by immunohistochemistry and Western blotting and present preliminary data from human tissue that is consistent with these experimental results. Together, these data suggest that the in vitro model of TBI used in this study strongly recapitulates the in vivo TBI pathobiology and is well suited for future mechanistic or therapeutic studies. The data also suggest the possible involvement of SORLA in the post-traumatic cascade linking TBI to AD.
-
Journal of neurotrauma · Jan 2017
Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury.
Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. ⋯ Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.
-
Journal of neurotrauma · Jan 2017
Cyclic Head Rotations Produce Modest Brain Injury in Infant Piglets.
Repetitive back-and-forth head rotation from vigorous shaking is purported to be a central mechanism responsible for diffuse white matter injury, subdural hemorrhage, and retinal hemorrhage in some cases of abusive head trauma (AHT) in young children. Although animal studies have identified mechanisms of traumatic brain injury (TBI) associated with single rapid head acceleration-decelerations at levels experienced in a motor vehicle crash, few experimental studies have investigated TBI from repetitive head rotations. The objective of this study was to systematically investigate the post-injury pathological time-course after cyclic, low-velocity head rotations in the piglet and compare them with single head rotations. ⋯ Cyclic head rotations, however, produced modest AI that significantly increased with time post-injury (p < 0.035) and had significantly greater amounts of RCNAC and EAH than noncyclic head rotations after 24 h post-injury (p < 0.05). No OI was observed. Future studies should investigate the contributions of additional physiological and mechanical features associated with AHT (e.g., hyperflexion/extension, increased intracranial pressure from crying or thoracic compression, and more than two cyclic episodes) to enhance our understanding of the causality between proposed mechanistic factors and AHT in infants.