Journal of neurotrauma
-
Journal of neurotrauma · Jul 2016
The Default Mode Network connectivity predicts cognitive recovery in severe acquired brain injured patients: a longitudinal study.
To study the functional connectivity in patients with severe acquired brain injury is very challenging for their high level of disability because of a prolonged period of coma, extended lesions, and several cognitive and behavioral disorders. In this article, we investigated in these patients the default mode network and somatomotor connectivity changes at rest longitudinally, in the subacute and late phase after brain injury. ⋯ Notably, strongest changes in functional connectivity significantly correlated to consistent clinical and cognitive recovery. This evidence seems to indicate that the reorganization of the Default Mode Network may represent a valid biomarker for the cognitive recovery in patients with severe acquired brain injury.
-
Journal of neurotrauma · Jul 2016
Time Course and Size of Blood-Brain Barrier Opening in a Mouse Model of Blast-Induced Traumatic Brain Injury.
An increasing number of studies have reported blood-brain barrier (BBB) dysfunction after blast-induced traumatic brain injury (bTBI). Despite this evidence, there is limited quantitative understanding of the extent of BBB opening and the time course of damage after blast injury. In addition, many studies do not report kinematic parameters of head motion, making it difficult to separate contributions of primary and tertiary blast-loading. ⋯ Exposure to blast with 272 ± 6 kPa peak overpressure, 0.69 ± 0.01 ms duration, and 65 ± 1 kPa*ms impulse resulted in significant acute extravasation of NaFl, 3 kDa dextran, and EB. However, there was no significant acute extravasation of 70 kDa or 500 kDa dextrans, and minimal to no extravasation of NaFl, dextrans, or EB 1 day after exposure. This study presents a detailed analysis of the time course and pore size of BBB opening after bTBI, supported by a characterization of kinematic parameters associated with blast-induced head motion.
-
Journal of neurotrauma · Jul 2016
Detection of subtle cognitive changes after mTBI using a novel tablet-based task.
This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.e., the Standard Assessment of Concussion [SAC]), and another eye movement-based tablet test, the King-Devick(®) (KD). ⋯ Further, measuring the sensitivity and specificity of these tasks to accurately predict mTBI with receiver operating characteristic analysis indicated that the Anti-point and Pro-point tasks reached excellent levels of accuracy and fared better than current standardized tools for assessment of concussion. Our findings suggest that these rapid tablet-based tasks are able to reliably detect and measure functional impairment in cognitive and sensorimotor control within hours after mTBI. These tasks may provide a more sensitive diagnostic measure for functional deficits that could prove key to earlier detection of concussion, evaluation of interventions, or even prediction of persistent symptoms.
-
Journal of neurotrauma · Jun 2016
Production of dopamine by aromatic L-amino acid decarboxylase cells after spinal cord injury.
Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. ⋯ These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.
-
Journal of neurotrauma · Jun 2016
EARLY DECOMPRESSION FOLLOWING CERVICAL SPINAL CORD INJURY: EXAMINING THE PROCESS OF CARE FROM ACCIDENT SCENE TO SURGERY.
Early decompression may improve neurological outcome after spinal cord injury (SCI), but is often difficult to achieve because of logistical issues. The aims of this study were to 1) determine the time to decompression in cases of isolated cervical SCI in Australia and New Zealand and 2) determine where substantial delays occur as patients move from the accident scene to surgery. Data were extracted from medical records of patients aged 15-70 years with C3-T1 traumatic SCI between 2010 and 2013. ⋯ In conclusion, the time of cervical spine decompression markedly improved over the study period. Neurological recovery appeared to be promoted by rapid decompression. Direct surgical hospital admission, rapid organization of theater, and where possible, use of closed reduction, are likely to be effective strategies to reduce the time to decompression.