Journal of neurotrauma
-
Journal of neurotrauma · Sep 2015
Nestin positive ependymal cells are increased in the human spinal cord after traumatic CNS injury.
Endogenous neural progenitor cell niches have been identified in adult mammalian brain and spinal cord. Few studies have examined human spinal cord tissue for a neural progenitor cell response in disease or after injury. Here, we have compared cervical spinal cord sections from 14 individuals who died as a result of nontraumatic causes (controls) with 27 who died from injury with evidence of trauma to the central nervous system. ⋯ There was a positive correlation between the percentage of ependymal cells that were nestin positive and post-injury survival time but not for age, postmortem delay, or glial fibrillary acidic protein (GFAP) immunoreactivity. No double-labelled nestin and GFAP cells were identified in the ependymal, subependymal, or parenchymal regions of the spinal cord. We need to further characterize this subset of ependymal cells to determine their role after injury, whether they are a population of neural progenitor cells with the potential for proliferation, migration, and differentiation for spinal cord repair, or whether they have other roles more in line with hypothalamic tanycytes, which they closely resemble.
-
Journal of neurotrauma · Sep 2015
Delayed intervention with intermittent hypoxia and task-training improves forelimb function in a rat model of cervical spinal injury.
The reduction of motor, sensory and autonomic function below the level of an incomplete spinal cord injury (SCI) has devastating consequences. One approach to restore function is to induce neural plasticity as a means of augmenting spontaneous functional recovery. Acute intermittent hypoxia (AIH-brief exposures to reduced O2 levels alternating with normal O2 levels) elicits plasticity in respiratory and nonrespiratory somatic spinal systems, including improvements in ladder walking performance in rats with incomplete SCI. ⋯ Importantly, concomitant ladder-specific motor training was needed to elicit AIH-induced improvements, such that AIH-treated SCI rats receiving no motor training or nontask-specific treadmill training during the treatment week did not show improvements over sham-treated rats with SCI. AIH treatment combined with task-specific training did not improve recovery on two different reach-to-grasp tasks, however, nor on tasks involving unskilled forepaw use. In brief, our results indicate that task-specific training is needed for AIH to improve ladder performance in a rat model of incomplete cervical SCI.
-
Journal of neurotrauma · Sep 2015
Neurological recovery after traumatic cervical spinal cord injury is superior if surgical decompression and instrumented fusion are performed within 8 h versus 8-24 h after injury - a single centre experience.
A prospective study was performed to evaluate the impact of surgical decompression (SD) and instrumented fusion within 8 h versus 8-24 h after injury on neurological recovery after cervical traumatic spinal cord injury (tSCI) in patients operated on in the UMC Ljubljana, Slovenia. Only patients with the American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades of A through C and with MRI-confirmed spinal cord compression were enrolled. The primary outcome was the change in AIS grade at the 6-month follow-up. ⋯ In a multivariate analysis, adjusted for the preoperative AIS grade and the degree of spinal canal compromise, the odds of an at least two-grade AIS improvement were at least 106% higher for patients in group 8 h than for patients in group 8-24 h (odds ratio=11.08, p=0.004). No statistically significant difference was found in the rate of perioperative complications, pneumonia, and the number of ventilator-dependent days or the mortality between the groups. Our results suggest that the patients with tSCI who undergo SD within 8 h after injury have superior neurological outcomes than patients who undergo SD 8-24 h after injury, without any increase in the rate of adverse effects.
-
Journal of neurotrauma · Sep 2015
Nanoparticle Estrogen in Rat Spinal Cord Injury Elicits Rapid Anti-inflammatory Effects in Plasma, CSF and Tissue.
Persons with spinal cord injury (SCI) are in need of effective therapeutics. Estrogen (E2), as a steroid hormone, is a highly pleiotropic agent; with anti-inflammatory, anti-apoptotic, and neurotrophic properties, it is ideal for use in treatment of patients with SCI. Safety concerns around the use of high doses of E2 have limited clinical application, however. ⋯ E2 showed rapid anti-inflammatory effects, significantly reducing interleukin (IL)-6, GRO-KC, MCP-1, and S100β in one or all compartments. Numerous additional targets of rapid E2 modulation were identified including: leptin, MIP-1α, IL-4, IL-2, IL-10, IFNγ, tumor necrosis factor-α, etc. These data further elucidate the rapid anti-inflammatory effects E2 exerts in an acute rat SCI model, have identified additional targets of estrogen efficacy, and suggest nanoparticle delivered estrogen may provide a safe and efficacious treatment option in persons with acute SCI.
-
Journal of neurotrauma · Sep 2015
Alteration of resting-state brain sensorimotor connectivity following spinal cord injury: A resting-state fMRI study.
Motor and sensory deficits after spinal cord injury (SCI) result in functional reorganization of the sensorimotor network. While several task-evoked functional magnetic resonance imaging (fMRI) studies demonstrated functional alteration of the sensorimotor network in SCI, there has been no study of the possible alteration of resting-state functional connectivity using resting-state fMRI. The aim of this study was to investigate the changes of brain functional connectivity in the sensorimotor cortex of patients with SCI. ⋯ Our findings demonstrated that, compared with control subjects, patients with SCI showed increased functional connectivity between primary motor cortex and other motor areas, such as the supplementary motor area and basal ganglia. However, decreased functional connectivity between primary somatosensory cortex and secondary somatosensory cortex also was found in patients with SCI, compared with controls. These findings therefore demonstrated alteration of the resting-state sensorimotor network in patients with SCI, who showed increased connectivity between motor components, and decreased connectivity between sensory components, within the sensorimotor network, suggesting that motor components within the motor network increased in functional connectivity in order to compensate for motor deficits, whereas the sensory network did not show any such increases or compensation for sensory deficits.