Journal of neurotrauma
-
Journal of neurotrauma · Apr 2015
Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.
The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. ⋯ Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.
-
Journal of neurotrauma · Apr 2015
ReviewThe manifestation of anxiety disorders after traumatic brain injury: A review.
The development of anxiety disorders after a traumatic brain injury (TBI) is a strong predictor of social, personal, and work dysfunction; nevertheless, the emergence of anxiety has been largely unexplored and poorly understood in the context of TBI. This article provides an overview of the limited published research to date on anxiety disorders that are known to develop after TBI, including post-traumatic stress disorder, generalized anxiety disorder, obsessive-compulsive disorder, panic disorder, specific phobia, and social anxiety disorder. ⋯ Putative neural correlates will be reviewed where known. A discussion of current treatment options and avenues for further research are explored.
-
Journal of neurotrauma · Apr 2015
Randomized Controlled TrialProlonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial.
Although mild therapeutic hypothermia is an effective neuroprotective strategy for cardiac arrest/resuscitated patients, and asphyxic newborns, recent randomized controlled trials (RCTs) have equally shown good neurological outcome between targeted temperature management at 33 °C versus 36 °C, and have not shown consistent benefits in patients with traumatic brain injury (TBI). We aimed to determine the effect of therapeutic hypothermia, while avoiding some limitations of earlier studies, which included patient selection based on Glasgow coma scale (GCS), delayed initiation of cooling, short duration of cooling, inter-center variation in patient care, and relatively rapid rewarming. We conducted a multicenter RCT in patients with severe TBI (GCS 4-8). ⋯ The overall rates of poor neurological outcomes were 53% and 48% in the therapeutic hypothermia and fever control groups, respectively. There were no significant differences in the likelihood of poor neurological outcome (relative risk [RR] 1.24, 95% confidence interval [CI] 0.62-2.48, p = 0.597) or mortality (RR 1.82, 95% CI 0.82-4.03, p = 0.180) between the two groups. We concluded that tight hemodynamic management and slow rewarming, together with prolonged therapeutic hypothermia (32-34 °C) for severe TBI, did not improve the neurological outcomes or risk of mortality compared with strict temperature control (35.5-37 °C).
-
Journal of neurotrauma · Apr 2015
Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion.
Sports-related concussion is a major public health problem in the United States and yet its biomechanical mechanisms remain unclear. In vitro studies demonstrate axonal elongation as a potential injury mechanism; however, current response-based injury predictors (e.g., maximum principal strain, ε(ep)) typically do not incorporate axonal orientations. We investigated the significance of white matter (WM) fiber orientation in strain estimation and compared fiber strain (ε(n)) with ε(ep) for 11 athletes with a clinical diagnosis of concussion. ⋯ For example, an average of 3.2% vs. 29.8% of WM was predicted above an optimal threshold of 0.18 established from an in vivo animal study using ε(n) and ε(ep), respectively, with an average Dice coefficient of 0.14. The distribution of WM regions with high ε(n) was consistent with typical heterogeneous patterns of WM disruptions in diffuse axonal injury, and the group-wise extent at the optimal threshold matched well with the percentage of WM voxels experiencing significant longitudinal changes of fractional anisotropy and mean diffusivity (3.2% and 3.44%, respectively) found from a separate independent study. These results suggest the significance of incorporating WM microstructural anisotropy in future brain injury studies.
-
Journal of neurotrauma · Apr 2015
Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury (TBI) and its application for survival time determination.
The availability of markers able to provide insight into protein changes in the central nervous system after fatal traumatic brain injury (TBI) is limited. The present study reports on the semi-quantitative assessments of the immunopositive neuroglial cells (both astrocytes and oligodendrocytes) and neurons for S100 protein (S100), as well as neuronal specific enolase (NSE), in the cerebral cortex, hippocampus, and cerebellum with regard to survival time and cause of death. Brain tissues of 47 autopsy cases with TBI (survival times ranged between several minutes and 34 d) and 10 age- and gender-matched controls (natural deaths) were examined. ⋯ The percentages of NSE-positive neurons in the hippocampus were likewise significantly lower in cases with ABI, compared with controls (p < 0.05) but increased in cases with SBI in PCZ (p < 0.05). In conclusion, the present findings emphasize that S100 and NSE-immunopositivity might be useful for detecting the cause and process of death due to TBI. Further, S100-positivity in neurons may be helpful to estimate the survival time of fatal injuries in legal medicine.