Journal of neurotrauma
-
Journal of neurotrauma · Apr 2015
Eye Tracking Detects Disconjugate Eye Movements Associated with Structural Traumatic Brain Injury and Concussion.
Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. ⋯ Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.
-
Journal of neurotrauma · Apr 2015
Divergent long-term consequences of chronic treatment with haloperidol, risperidone, and bromocriptine on traumatic brain injury-induced cognitive deficits.
Antipsychotic drugs (APDs) are provided in the clinic to manage traumatic brain injury (TBI)-induced agitation and aggression. Experimental TBI studies consistently show that daily administration of the APDs, haloperidol (HAL) and risperidone (RISP), hinder recovery. However, it is unknown how long the adverse effects remain after cessation of treatment. ⋯ Moreover, the HAL, RISP, and VEH groups continued to be cognitively deficient versus BRO, which also reduced cortical damage. These data replicate previous reports that HAL and RISP impede cognitive recovery after TBI and expand the literature by revealing that the deleterious effects persist for 3 months after drug discontinuation. BRO conferred cognitive benefits when administered concomitantly with behavioral testing, thus replicating previous findings, and also after cessation demonstrating enduring efficacy.
-
Journal of neurotrauma · Apr 2015
Association between head injury and helmet use in alpine skiers: Cohort study from a Swiss level I trauma center.
The association between helmet use during alpine skiing and incidence and severity of head injuries was analyzed. All patients admitted to a level 1 trauma center for traumatic brain injuries (TBIs) sustained from skiing accidents during the seasons 2000-2001 and 2010-2011 were eligible. Primary outcome was the association between helmet use and severity of TBI measured by Glasgow Coma Scale (GCS), computed tomography (CT) results, and necessity of neurosurgical intervention. ⋯ Despite increases in helmet use, we found no decrease in severe TBI among alpine skiers. Logistic regression analysis showed no significant difference in TBI with regard to helmet use, but increased risk for off-piste skiers. The limited protection of helmets and dangers of skiing off-piste should be targeted by prevention programs.
-
Journal of neurotrauma · Apr 2015
Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.
The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. ⋯ Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.
-
Journal of neurotrauma · Apr 2015
Immunohistochemical investigation of S100 and NSE in cases of traumatic brain injury (TBI) and its application for survival time determination.
The availability of markers able to provide insight into protein changes in the central nervous system after fatal traumatic brain injury (TBI) is limited. The present study reports on the semi-quantitative assessments of the immunopositive neuroglial cells (both astrocytes and oligodendrocytes) and neurons for S100 protein (S100), as well as neuronal specific enolase (NSE), in the cerebral cortex, hippocampus, and cerebellum with regard to survival time and cause of death. Brain tissues of 47 autopsy cases with TBI (survival times ranged between several minutes and 34 d) and 10 age- and gender-matched controls (natural deaths) were examined. ⋯ The percentages of NSE-positive neurons in the hippocampus were likewise significantly lower in cases with ABI, compared with controls (p < 0.05) but increased in cases with SBI in PCZ (p < 0.05). In conclusion, the present findings emphasize that S100 and NSE-immunopositivity might be useful for detecting the cause and process of death due to TBI. Further, S100-positivity in neurons may be helpful to estimate the survival time of fatal injuries in legal medicine.