Journal of neurotrauma
-
Journal of neurotrauma · Nov 2014
ReviewModulating inflammatory cell responses to spinal cord injury: all in good time.
Spinal cord injury can have a range of debilitating effects, permanently impacting a patient's quality of life. Initially thought to be an immune privileged site, the spinal cord is able to mount a timely and well organized inflammatory response to injury. Intricate immune cell interactions are triggered, typically consisting of a staggered multiphasic immune cell response, which can become deregulated if left unchecked. ⋯ By clearly defining the chronological order of inflammatory events after trauma, immunomodulatory drug delivery timing can be better optimized. Further, we compare spinal cord injury-induced inflammatory responses in rodent and human studies, enabling clinicians to consider these differences when initiating clinical trials. Improved understanding of the cellular immune response after spinal cord injury would enhance the efficacy of immunomodulatory agents, enabling combined therapies to be considered.
-
Journal of neurotrauma · Nov 2014
Development of a Database for Translational Spinal Cord Injury Research.
Efforts to understand spinal cord injury (SCI) and other complex neurotrauma disorders at the pre-clinical level have shown progress in recent years. However, successful translation of basic research into clinical practice has been slow, partly because of the large, heterogeneous data sets involved. In this sense, translational neurological research represents a "big data" problem. ⋯ The majority of animals in the database have measures collected for health monitoring, such as weight loss/gain, heart rate, blood pressure, postoperative monitoring of bladder function and drug/fluid administration, behavioral outcome measures of locomotion, and tissue sparing postmortem. Attempts to align these variables with currently accepted common data elements highlighted the need for more translational outcomes to be identified as clinical endpoints for therapeutic testing. Last, we use syndromic analysis to identify conserved biological mechanisms of recovery after cervical SCI between rats and monkeys that will allow for more-efficient testing of therapeutics that will need to be translated toward future clinical trials.
-
Journal of neurotrauma · Nov 2014
An acute growth factor treatment that preserves function after spinal cord contusion injury.
Inflammation of the spinal cord after traumatic spinal cord injury (SCI) leads to destruction of healthy tissue. This "secondary degeneration" is more damaging than the initial physical damage and is the major contributor to permanent loss of functions. In our previous study, we showed that combined delivery of two growth factors, vascular endothelial growth factor and platelet-derived growth factor, significantly reduced secondary degeneration after hemisection injury of the spinal cord in the rat. ⋯ Treated animals had significantly reduced lesion cavities and reduced macroglia/macrophage activation around the injury site. We conclude that growth factor treatment preserved spinal cord tissues after contusion injury, thereby allowing functional recovery. This treatment has the potential to significantly reduce the severity of human spinal cord injuries.
-
Journal of neurotrauma · Nov 2014
A toll-like receptor 9 antagonist improves bladder function and white matter sparing in spinal cord injury.
Spinal cord injury (SCI) affects motor, sensory, and autonomic functions. As current therapies do not adequately alleviate functional deficits, the development of new and more effective approaches is of critical importance. Our earlier investigations indicated that intrathecal administration of a toll-like receptor 9 (TLR9) antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), to mice sustaining a severe, mid-thoracic contusion injury diminished neuropathic pain but did not alter locomotor deficits. ⋯ A significant improvement in white matter sparing was also observed, most likely due to alterations in the inflammatory milieu. These findings indicate that the TLR9 antagonist has beneficial effects not only in reducing sensory deficits, but also on bladder dysfunction and tissue preservation. Thus, modulation of innate immune receptor signaling in the spinal cord can impact the effects of SCI.
-
Journal of neurotrauma · Nov 2014
Very High Resolution Ultrasound Imaging for Real-Time Quantitative Visualisation of Vascular Disruption After Spinal Cord Injury.
Spinal cord injury (SCI) is characterized by vascular disruption with intramedullary hemorrhage, alterations in blood-spinal cord barrier integrity, and perilesional ischemia. A safe and easily applied imaging technique to quantify evolving intraspinal vascular changes after SCI is lacking. We evaluated the utility of very high resolution ultrasound (VHRUS) imaging to assess SCI-induced vascular disruption in a clinically relevant rodent model. ⋯ Time-lapse videos demonstrated that the expanding parenchymal hemorrhage is preceded by new perilesional hemorrhagic foci. VHRUS enables real-time quantitative live anatomical imaging of acute and subacute vascular disruption after SCI in rats. This technique has important scientific and clinical translational applications.