Journal of neurotrauma
-
Journal of neurotrauma · Apr 2014
Evidence for the therapeutic efficacy of either mild hypothermia or oxygen radical scavengers following repetitive mild traumatic brain injury.
Repetitive brain injury, particularly that occurring with sporting-related injuries, has recently garnered increased attention in both the clinical and public settings. In the laboratory, we have demonstrated the adverse axonal and vascular consequences of repetitive brain injury and have demonstrated that moderate hypothermia and/or FK506 exerted protective effects after repetitive mild traumatic brain injury (mTBI) when administered within a specific time frame, suggesting a range of therapeutic modalities to prevent a dramatic exacerbation. In this communication, we revisit the utility of targeted therapeutic intervention to seek the minimal level of hypothermia needed to achieve protection while probing the role of oxygen radicals and their therapeutic targeting. ⋯ Whereas complete impairment of vascular reactivity was observed in group 1 (without intervention), significant preservation of vascular reactivity was found in the other groups. Similarly, whereas remarkable increase in the APP-positive axon was observed in group 1, there were no significant increases in the other groups. Collectively, these findings indicate that even mild hypothermia or the blunting free radical damage, even when performed in a delayed period, is protective in repetitive mTBI.
-
Journal of neurotrauma · Apr 2014
PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury.
Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. ⋯ Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways.
-
Journal of neurotrauma · Apr 2014
Assessment of an Experimental Rodent Model of Pediatric Mild Traumatic Brain Injury.
Childhood is one the highest risk periods for experiencing a mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls. In addition, many children experience lingering symptomology (post-concussion syndrome) from these closed head injuries. Although the negative sequel of mTBI has been described, a clinically reliable animal model of mild pediatric brain injury has not. ⋯ Juvenile rats who experienced a single mTBI displayed significant motor/balance impairments when tested on the beam walking task and in the open field, as well as deficits of executive functioning as measured with the novel context mismatch task and the probe trial of the Morris water task. In addition, both male and female rats showed depression-like behavior in the forced swim task, with male rats also exhibiting decreased anxiety-related behaviors in the elevated plus maze. The results from this study suggest that the modified weight-drop technique induces a clinically relevant behavioral phenotype in juvenile rats, and may provide researchers with a reliable animal model of mTBI/concussion from which clinical therapeutic strategies could be developed.
-
Journal of neurotrauma · Apr 2014
Prevalence of and risk factors for poor functioning after isolated mild traumatic brain injury in children.
This study aimed to determine the prevalence and predictors of poor 3 and 12 month quality of life outcomes in a cohort of pediatric patients with isolated mild TBI. We conducted a prospective cohort study of children and adolescents <18 years of age treated for an isolated mild TBI, defined as "no radiographically apparent intracranial injury" or "an isolated skull fracture, and no other clinically significant non-brain injuries." The main outcome measure was the change in quality of life from baseline at 3 and 12 months following injury, as measured by the Pediatric Quality of Life index (PedsQL). ⋯ Significant predictors of poor functioning included less parental education, Hispanic ethnicity (at 3 months following injury, but not at 12 months); low household income (at 3 and 12 months), and Medicaid insurance (at 12 months only). Children and adolescents sustaining a mild TBI who are socioeconomically disadvantaged may require additional intervention to mitigate the effects of mild TBI on their functioning.
-
Journal of neurotrauma · Apr 2014
Post-acute Brain Injury Urinary Signature: A New Resource for Molecular Diagnostics.
Heterogeneity within brain injury presents a challenge to the development of informative molecular diagnostics. Recent studies show progress, particularly in cerebrospinal fluid, with biomarker assays targeting one or a few structural proteins. Protein-based assays in peripheral fluids, however, have been more challenging to develop, in part because of restricted and intermittent barrier access. ⋯ Identified peptide constituents were enriched for outgrowth and guidance, extracellular matrix, and post-synaptic density proteins, which were reflective of ongoing post-acute neuroplastic processes demonstrating pathobiological relevance. Taken together, these findings support further development of diagnostics based on brain injury urinary signatures using either combinatorial quantitative models or pattern-recognition methods. Particularly, these findings espouse assay development to address unmet diagnostic and theragnostic needs in brain injury rehabilitative medicine.