Journal of neurotrauma
-
Journal of neurotrauma · Jul 2013
More than cell dust: microparticles isolated from cerebrospinal fluid of brain injured patients are messengers carrying mRNAs, miRNAs, and proteins.
Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with neuronal RNA granules and miRNAs known to regulate neuronal processes. ⋯ Notably, miR-9 and miR-451 were differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ.
-
Journal of neurotrauma · Jul 2013
Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury.
The beneficial effect of interventions with chondroitinase ABC enzyme to reduce axon growth-inhibitory chondroitin sulphate side chains after central nervous system injuries has been mainly attributed to enhanced axonal sprouting. After traumatic brain injury (TBI), it is unknown whether newly sprouting axons that occur as a result of interventional strategies are able to functionally contribute to existing circuitry, and it is uncertain whether maladaptive sprouting occurs to increase the well-known risk for seizure activity after TBI. Here, we show that after a controlled cortical impact injury in rats, chondroitinase infusion into injured cortex at 30 min and 3 days reduced c-Fos⁺ cell staining resulting from the injury alone at 1 week postinjury, indicating that at baseline, abnormal spontaneous activity is likely to be reduced, not increased, with this type of intervention. c-Fos⁺ cell staining elicited by neural activity from stimulation of the affected forelimb 1 week after injury was significantly enhanced by chondroitinase, indicating a widespread effect on cortical map plasticity. ⋯ After injury, chondroitin sulfate proteoglycan digestion produced the expected increase in growth-associated protein 43-positive axons and perikarya, of which a significantly greater number were double labeled for c-Fos after intervention with chondroitinase, compared to vehicle. These data indicate that chondroitinase produces significant gains in cortical map plasticity after TBI, and that either axonal sprouting and/or changes in perineuronal nets may underlie this effect. Chondroitinase dampens, rather than increases nonspecific c-Fos activity after brain injury, and induction of axonal sprouting is not maladaptive because greater numbers are functionally active and provide a significant contribution to forelimb circuitry after brain injury.
-
Journal of neurotrauma · Jul 2013
Restoration of neuroendocrine stress response by glucocorticoid receptor or GABA(A) receptor antagonists after experimental traumatic brain injury.
We previously reported that traumatic brain injury (TBI) produced by moderate controlled cortical impact (CCI) attenuates the stress response of the hypothalamic-pituitary-adrenal (HPA) axis between 21 and 70 days postinjury and enhances the sensitivity of the stress response to glucocorticoid negative feedback. In the current study, we investigated two possible mechanisms for the CCI-induced attenuation of the HPA stress response-i.e, glucocorticoid receptor (GR) and GABA-mediated inhibition of the HPA axis, with the GR antagonist, mifepristone (RU486), or the GABA(A)-receptor antagonist, bicuculline. ⋯ Our histological results demonstrate that moderate CCI led to a loss of glutamic acid decarboxylase 67 or parvalbumin-positive inhibitory neurons within regions of the hippocampus and amygdala but did not lead to significant increases in GR in these regions. These findings indicate that suppression of the stress-induced HPA response after moderate CCI is mediated by the inhibitory actions of both GR and GABA, with a corresponding loss of inhibitory neurons within brain regions with neural pathways affecting limbic stress-integrative pathways.
-
Journal of neurotrauma · Jul 2013
Effects of acute intrathecal baclofen in an animal model of TBI-induced spasticity, cognitive, and balance disabilities.
Spasticity is a major health problem for patients with traumatic brain injury (TBI). In addition to spasticity, TBI patients exhibit enduring cognitive, balance, and other motor impairments. Although the use of antispastic medications, particularly ITB, can decrease the severity of TBI-induced spasticity, current guidelines preclude the use of ITB during the first year after TBI. ⋯ Collectively, these data provide a strong molecular footprint of enhanced expression of reflex regulation by presynaptic inhibition. The possibility that acute ITB treatment may decrease maladaptive segmental and descending plasticity is discussed. The data provided by the present animal model initiates a pre-clinical platform for safety, feasibility, and efficacy of early ITB intervention after TBI.
-
Journal of neurotrauma · Jul 2013
Rat injury model under controlled field-relevant primary blast conditions: acute response to a wide range of peak overpressures.
We evaluated the acute (up to 24 h) pathophysiological response to primary blast using a rat model and helium driven shock tube. The shock tube generates animal loadings with controlled pure primary blast parameters over a wide range and field-relevant conditions. We studied the biomechanical loading with a set of pressure gauges mounted on the surface of the nose, in the cranial space, and in the thoracic cavity of cadaver rats. ⋯ The immunostaining against immunoglobulin G (IgG) of brain sections of rats sacrificed 24-h post-exposure indicated the diffuse blood-brain barrier breakdown in the brain parenchyma. At high blast intensities (peak overpressure of 190 kPa or more), the IgG uptake by neurons was evident, but there was no evidence of neurodegeneration after 24 h post-exposure, as indicated by cupric silver staining. We observed that the acute response as well as mortality is a non-linear function over the peak overpressure and impulse ranges explored in this work.