Journal of neurotrauma
-
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. ⋯ In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
-
Journal of neurotrauma · Jun 2013
Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition.
We explored whether cerebral cortical impact injury (CCI) effects extend beyond direct lesion sites to affect remote brain networks, and whether acetylcholinesterase (AChE) inhibition elicits discrete changes in functional activation of motor circuits following CCI. Adult male rats underwent unilateral motor-sensory CCI or sham injury. Physostigmine (AChE inhibitor) or saline were administered subcutaneously continuously via implanted minipumps (1.6 micromoles/kg/day) for 3 weeks, followed by cerebral perfusion mapping during treadmill walking using [(14)C]-iodoantipyrine. ⋯ This phenomenon, augmented by physostigmine, may partially compensate motor deficits. FC decreased inter-hemispherically and in negative, but not positive, intra-hemispherical FC, and it was not affected by physostigmine. Circuit-based approaches into functional brain reorganization may inform future behavioral or molecular strategies to augment targeted neurorehabilitation.
-
Journal of neurotrauma · Jun 2013
Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury.
Use of novel approaches in imaging modalities is needed for enhancing diagnostic and therapeutic outcomes of persons with a traumatic brain injury (TBI). This study explored the feasibility of using functional magnetic resonance imaging (fMRI) in conjunction with behavioral measures to target dynamic changes in specific neural circuitries in an animal model of TBI. Wistar rats were randomly assigned to one of two groups (traumatic brain injury/sham operation). ⋯ The Morris water maze test indicated that cognitive deficits persisted for the first week after injury and, to a large extent, resolved thereafter. Resting state functional connectivity (rsFC) analysis detected initially diminished connectivity between cortical areas involved in cognition for the TBI group; however, the connectivity patterns normalized at 1 week and remained so at the 3 weeks post-injury time point. Taken together, we have demonstrated an objective in vivo marker for mapping functional brain changes correlated with injury-associated cognitive behavior deficits and offer an animal model for testing potential therapeutic interventions options.
-
Journal of neurotrauma · Jun 2013
ReviewOmega-3 fatty acids as a putative treatment for traumatic brain injury.
Traumatic brain injury (TBI) is a global public health epidemic. In the US alone, more than 3 million people sustain a TBI annually. It is one of the most disabling injuries as it may cause motor and sensory deficits and lead to severe cognitive, emotional, and psychosocial impairment, crippling vital areas of higher functioning. ⋯ Although both animal models and human studies of brain injuries suggest they may provide benefits, there has been no clinical trial evaluating the effects of n-3 fatty acids on resilience to, or treatment, of TBI. This article reviews the known functions of n-3 fatty acids in the brain and their specific role in the cellular and biochemical pathways underlying neurotraumatic injury. We also highlight recent studies on the therapeutic impact of enhanced omega 3 intake in vivo, and how this may be a particularly promising approach to improving functional outcome in patients with TBI.
-
Journal of neurotrauma · Jun 2013
Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: a practical example.
Over the last decade, biomarker research has identified potential biomarkers for the diagnosis, prognosis, and management of traumatic brain injury (TBI). Several cerebrospinal fluid (CSF) and serum biomarkers have shown promise in predicting long-term outcome after severe TBI. Despite this increased focus on identifying biomarkers for outcome prognostication after a severe TBI, several challenges still exist in effectively modeling the significant heterogeneity observed in TBI-related pathology, as well as the biomarker-outcome relationships. ⋯ Further, many biomarker studies to date have focused on the prediction power of biomarkers without controlling for potential clinical and demographic confounders that have been previously shown to affect long-term outcome. In this article, we demonstrate the application of a practical approach to delineate and describe distinct subpopulations having similar longitudinal biomarker profiles and to model the relationships between these biomarker profiles and outcomes while taking into account potential confounding factors. As an example, we demonstrate a group-based modeling technique to identify temporal S100 calcium-binding protein B (S100b) profiles, measured from CSF over the first week post-injury, in a sample of adult subjects with TBI, and we use multivariate logistic regression to show that the prediction power of S100b biomarker profiles can be superior to the prediction power of single-point estimates.