Journal of neurotrauma
-
Journal of neurotrauma · Jun 2013
Acute delivery of EphA4-Fc improves functional recovery after contusive spinal cord injury in rats.
Blocking the action of inhibitory molecules at sites of central nervous system injury has been proposed as a strategy to promote axonal regeneration and functional recovery. We have previously shown that genetic deletion or competitive antagonism of EphA4 receptor activity promotes axonal regeneration and functional recovery in a mouse model of lateral hemisection spinal cord injury. ⋯ Consistent with functional improvement, using high-resolution ex vivo magnetic resonance imaging at 16.4T, we found that rats treated with EphA4-Fc had a significantly increased cross-sectional area of the dorsal funiculus caudal to the injury epicenter compared with controls. Our findings indicate that EphA4-Fc promotes functional recovery following contusive spinal cord injury and provides further support for the therapeutic benefit of treatment with the competitive antagonist in acute cases of spinal cord injury.
-
Journal of neurotrauma · Jun 2013
S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury.
As an astrocytic protein specific to the central nervous system, S100b is a potentially useful marker in outcome prediction after traumatic brain injury (TBI). Some studies have questioned the validity of S100b, citing the extracerebral origins of the protein as reducing the specificity of the marker. This study evaluated S100b as a prognostic biomarker in adult subjects with severe TBI (sTBI) by comparing outcomes with S100b temporal profiles generated from both cerebrospinal fluid (CSF) (n = 138 subjects) and serum (n = 80 subjects) samples across a 6-day time course. ⋯ Possibly as a result of extracerebral sources of S100b in serum, as represented by high ISS scores (p = 0.032), temporal serum profiles were associated with acute mortality (p = 0.015). High CSF S100b levels were observed in women (p = 0.022) and older subjects (p = 0.004). Multivariate logistic regression confirmed CSF S100b profiles in predicting GOS and DRS and showed mean and peak serum S100b as acute mortality predictors after sTBI.
-
Journal of neurotrauma · Jun 2013
ReviewOmega-3 fatty acids as a putative treatment for traumatic brain injury.
Traumatic brain injury (TBI) is a global public health epidemic. In the US alone, more than 3 million people sustain a TBI annually. It is one of the most disabling injuries as it may cause motor and sensory deficits and lead to severe cognitive, emotional, and psychosocial impairment, crippling vital areas of higher functioning. ⋯ Although both animal models and human studies of brain injuries suggest they may provide benefits, there has been no clinical trial evaluating the effects of n-3 fatty acids on resilience to, or treatment, of TBI. This article reviews the known functions of n-3 fatty acids in the brain and their specific role in the cellular and biochemical pathways underlying neurotraumatic injury. We also highlight recent studies on the therapeutic impact of enhanced omega 3 intake in vivo, and how this may be a particularly promising approach to improving functional outcome in patients with TBI.
-
Journal of neurotrauma · Jun 2013
Clinical TrialGrowth hormone replacement therapy in patients with traumatic brain injury.
In patients with severe traumatic brain injury (TBI), a growth hormone deficiency (GHD) is frequent and may contribute to the cognitive sequelae and reduction in quality of life (QoL). Recent studies have suggested that GH replacement therapy (GHRT) can improve processing speed and memory. The aim of the study was to analyze the efficacy of GHRT on cognition, activities of daily living (ADL), and QoL and the factors that predicted and contributed to these effects. ⋯ Greatest improvements were associated with lower performance before treatment. The magnitude of the improvements in ADL and QoL was moderately correlated with the improvement in cognition. In conclusion, replacement therapy can improve cognition and QoL in patients with TBI who have GHD, especially in those with severe disabilities.
-
Journal of neurotrauma · Jun 2013
Multi-modal approach for investigating brain and behavior changes in an animal model of traumatic brain injury.
Use of novel approaches in imaging modalities is needed for enhancing diagnostic and therapeutic outcomes of persons with a traumatic brain injury (TBI). This study explored the feasibility of using functional magnetic resonance imaging (fMRI) in conjunction with behavioral measures to target dynamic changes in specific neural circuitries in an animal model of TBI. Wistar rats were randomly assigned to one of two groups (traumatic brain injury/sham operation). ⋯ The Morris water maze test indicated that cognitive deficits persisted for the first week after injury and, to a large extent, resolved thereafter. Resting state functional connectivity (rsFC) analysis detected initially diminished connectivity between cortical areas involved in cognition for the TBI group; however, the connectivity patterns normalized at 1 week and remained so at the 3 weeks post-injury time point. Taken together, we have demonstrated an objective in vivo marker for mapping functional brain changes correlated with injury-associated cognitive behavior deficits and offer an animal model for testing potential therapeutic interventions options.