Journal of neurotrauma
-
Journal of neurotrauma · May 2013
Inflammatory consequences in a rodent model of mild traumatic brain injury.
Mild traumatic brain injury (mTBI), particularly mild "blast type" injuries resulting from improvised exploding devices and many sport-caused injuries to the brain, result in long-term impairment of cognition and behavior. Our central hypothesis is that there are inflammatory consequences to mTBI that persist over time and, in part, are responsible for resultant pathogenesis and clinical outcomes. ⋯ Our mild LFP injury resulted in acute increases in interleukin-1α/β and tumor necrosis factor alpha levels, macrophage/microglial and astrocytic activation, evidence of heightened cellular stress, and blood-brain barrier (BBB) dysfunction that were evident as early as 3-6 h postinjury. Both glial activation and BBB dysfunction persisted for 18 days postinjury.
-
Journal of neurotrauma · May 2013
Challenges in the development of rodent models of mild traumatic brain injury.
Approximately 75% of traumatic brain injuries (TBI) are classified mild (mTBI). Despite the high frequency of mTBI, it is the least well studied. The prevalence of mTBI among service personnel returning from Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF) and the recent reports of an association between repeated mTBI and the early onset of Alzheimer's and other types of dementias in retired athletes has focused much attention on mTBI. ⋯ Although methods for the diagnosis and evaluation of the acute and chronic effects of mTBI in humans are well established, the same is not the case for rodents, the most widely used animal for TBI studies. Despite the magnitude of the difficulties associated with adapting these methods for experimental mTBI research, they must be surmounted. The identification and testing of treatments for mTBI depends of the development, characterization and validation of reproducible, clinically relevant models of mTBI.
-
This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in service members and veterans. ⋯ Recent use of closed head and blast injury animal models may more closely approximate clinical mTBI. Translation of interventions that are developed in animal models to patients with mTBI is a priority for the research agenda. This Special Issue on mTBI integrates basic neuroscience studies using animal models with studies of human mTBI, including the cognitive sequelae, persisting symptoms, brain imaging, and host factors that facilitate recovery.
-
Journal of neurotrauma · Apr 2013
ReviewElectroencephalography and quantitative electroencephalography in mild traumatic brain injury.
Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. ⋯ An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.