Journal of neurotrauma
-
Journal of neurotrauma · Dec 2012
The expression of α-SMA in the painful traumatic neuroma: potential role in the pathobiology of neuropathic pain.
The exact mechanism of neuroma-associated pain is not yet fully understood, thus contributing to the substantial challenge faced in managing patients with painful neuromas. We aimed to observe the expression of alpha smooth muscle actin (α-SMA) in the painful traumatic neuroma and to investigate its possible roles in the cause of neuroma-associated pain. Its expression is considered to be a useful phenotypic marker for myofibroblast, and may contribute to its increased contractile activity. ⋯ Linear regression analysis indicated that the expression intensity of α-SMA was positively related to the scale of VAS (R(2)=0.691, p<0.001). These findings suggest that: 1) expression of α-SMA may play certain roles in painful traumatic neuroma, either as a direct cause of neuroma-associated pain or as an indirect marker of local mechanical stimuli, and 2) the presence of α-SMA in the painful group may provide rationale for transpositional procedures in the management of traumatic neuroma. The persistent existence of α-SMA in the painful group and the correlation with VAS scores may provide insight into the development of new therapeutic strategies.
-
In the clinical setting, skin temperature is both easily evaluated and useful in assessments of sympathetic dysfunction. The present study purposed to observe the serial skin temperature changes of both hindlimbs following several types of sciatic nerve injury (complete transection and ligation model [CTL], crush injury model [CRI], and chronic constriction injury model [CCI]) in Sprague-Dawley rats and, further, to delineate the possible mechanisms through various evaluation methods. The temperature differences between the intact and injured areas (ΔT) on the plantar surface and toes varied among the CTL, CRI, and CCI injury models during the acute stage (7 days post-injury). ⋯ The latency and amplitude of the compound muscle action potential (CMAP) in the involved plantar muscle was not found in the CTL group 4 weeks post-injury, but showed gradual restoration in the CRI and CCI models. Regression analysis revealed that the ΔT in the plantar area and toes were affected only by the CMAP amplitude in the involved plantar muscle; therefore, it can be said that the skin temperature on the injured area after sciatic nerve injury was influenced by the functional status of the involved muscle. Measurement of skin temperature can differentiate mild peripheral nerve injury from moderate-to-severe injuries, although its clinical significance might be limited.
-
Journal of neurotrauma · Dec 2012
Astrocyte-specific expression of survivin after intracerebral hemorrhage in mice: a possible role in reactive gliosis?
Intracerebral hemorrhage (ICH), the most common form of hemorrhagic stroke, accounts for up to 15% of all strokes. Despite maximal surgical intervention and supportive care, ICH is associated with significant morbidity and mortality, in part due to a lack of viable treatment options. Astrogliosis, a key feature of secondary injury that is characterized by glial proliferation, is a poorly-defined process that may produce both beneficial and detrimental outcomes after brain injury. ⋯ Moreover, the survivin expression was co-localized in proliferating astrocytes as evidenced by triple-label immunohistochemistry. Finally, shRNA-mediated silencing of survivin expression attenuated PCNA expression and reduced cellular proliferation in human glial cells. Together, these data suggest a potentially novel role for survivin in functionally promoting astrocytic proliferation after ICH.
-
Journal of neurotrauma · Dec 2012
Degeneration of phrenic motor neurons induces long-term diaphragm deficits following mid-cervical spinal contusion in mice.
A primary cause of morbidity and mortality following cervical spinal cord injury (SCI) is respiratory compromise, regardless of the level of trauma. In particular, SCI at mid-cervical regions targets degeneration of both descending bulbospinal respiratory axons and cell bodies of phrenic motor neurons, resulting in deficits in the function of the diaphragm, the primary muscle of inspiration. Contusion-type trauma to the cervical spinal cord is one of the most common forms of human SCI; however, few studies have evaluated mid-cervical contusion in animal models or characterized consequent histopathological and functional effects of degeneration of phrenic motor neuron-diaphragm circuitry. ⋯ We report that phrenic motor neuron loss in cervical spinal cord, phrenic nerve axonal degeneration, and denervation at diaphragm neuromuscular junctions (NMJ) resulted in compromised ipsilateral diaphragm function, as demonstrated by persistent reduction in diaphragm compound muscle action potential amplitudes following phrenic nerve stimulation and abnormalities in spontaneous diaphragm electromyography (EMG) recordings. This injury paradigm is reproducible, does not require ventilatory assistance, and provides proof-of-principle that generation of unilateral cervical contusion is a feasible strategy for modeling diaphragmatic/respiratory deficits in mice. This study and its accompanying analyses pave the way for using transgenic mouse technology to explore the function of specific genes in the pathophysiology of phrenic motor neuron degeneration and respiratory dysfunction following cervical SCI.
-
Journal of neurotrauma · Dec 2012
Influence of breaching the connective sheaths of the donor nerve on its myelinated sensory axons and on their sprouting into the end-to-side coapted nerve in the rat.
The influence of breaching the connective sheaths of the donor sural nerve on axonal sprouting into the end-to-side coapted peroneal nerve was examined in the rat. In parallel, the effect of these procedures on the donor nerve was assessed. The sheaths of the donor nerve at the coaptation site were either left completely intact (group A) or they were breached by epineurial sutures (group B), an epineurial window (group C), or a perineurial window (group D). ⋯ The average CAP area and the total number of myelinated axons in the donor nerves were not different among the experimental groups. In conclusion, myelinated sensory axons are able to penetrate the epiperineurium of donor nerves after end-to-side nerve coaption; however, their ingrowth into recipient nerves is significantly enhanced by breaching the epiperineurial sheets at the coaptation site. Breaching does not cause permanent injury to the donor nerve.