Journal of neurotrauma
-
Journal of neurotrauma · Aug 2012
An FMRI study of auditory orienting and inhibition of return in pediatric mild traumatic brain injury.
Studies in adult mild traumatic brain injury (mTBI) have shown that two key measures of attention, spatial reorienting and inhibition of return (IOR), are impaired during the first few weeks of injury. However, it is currently unknown whether similar deficits exist following pediatric mTBI. The current study used functional magnetic resonance imaging (fMRI) to investigate the effects of semi-acute mTBI (<3 weeks post-injury) on auditory orienting in 14 pediatric mTBI patients (age 13.50±1.83 years; education: 6.86±1.88 years), and 14 healthy controls (age 13.29±2.09 years; education: 7.21±2.08 years), matched for age and years of education. ⋯ In contrast, functional imaging results indicated that patients with mTBI demonstrated significantly decreased activation within the bilateral posterior cingulate gyrus, thalamus, basal ganglia, midbrain nuclei, and cerebellum. The spatial topography of hypoactivation was very similar to our previous study in adults, suggesting that subcortical structures may be particularly affected by the initial biomechanical forces in mTBI. Current results also suggest that fMRI may be a more sensitive tool for identifying semi-acute effects of mTBI than the procedures currently used in clinical practice, such as neuropsychological testing and structural scans. fMRI findings could potentially serve as a biomarker for measuring the subtle injury caused by mTBI, and documenting the course of recovery.
-
Journal of neurotrauma · Aug 2012
Predicting progressive hemorrhagic injury after traumatic brain injury: derivation and validation of a risk score based on admission characteristics.
Previous studies have demonstrated that patients with traumatic brain injury (TBI) who also have progressive hemorrhagic injury (PHI), have a higher risk of clinical deterioration and worse outcomes than do TBI patients without PHI. Therefore, the early prediction of PHI occurrence is useful to evaluate the status of patients with TBI and to improve outcomes. The objective of this study was to develop and validate a prognostic model that uses information available at admission to determine the likelihood of PHI after TBI. ⋯ In the validation cohort, the corresponding PHI rates were 10.9%, 47.3%, and 86.9%. The C-statistic for the point system was 0.864 (p=0.509 by the Hosmer-Lemeshow test) in the development cohort, and 0.862 (p=0.589 by the Hosmer-Lemeshow test) in the validation cohort. In conclusion, a relatively simple risk score using admission predictors accurately predicted the risk for PHI after TBI.
-
Journal of neurotrauma · Aug 2012
Comparative StudyDissociated predegenerated peripheral nerve transplants for spinal cord injury repair: a comprehensive assessment of their effects on regeneration and functional recovery compared to Schwann cell transplants.
Several recent studies suggest that predegenerated nerves (PDNs) or dissociated PDNs (dPDNs) can improve behavioral and histological outcomes following transplantation into the injured rat spinal cord. In the current study we tested the efficacy of dPDN transplantation by grafting cells isolated from the sciatic nerve 7 days after crush. We did not replicate one study, but rather assessed what appeared, based on five published reports, to be a reported robust effect of dPDN grafts on corticospinal tract (CST) regeneration and locomotor recovery. ⋯ Unlike previous studies, dPDN grafts did not promote long-distance axonal growth of CST axons, brainstem spinal axons, or ascending dorsal column sensory axons. Moreover, using a battery of locomotor tests (Basso Beattie Bresnahan [BBB] score, BBB subscore, inked footprint, Catwalk, and ladderwalk), we failed to detect any beneficial effects of dPDN transplantation on the recovery of locomotor function after SCI. We conclude that dPDN transplants are not sufficient to promote CST regeneration or locomotor recovery after SCI.
-
Journal of neurotrauma · Aug 2012
Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice.
Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. ⋯ CA3 cell loss was seen after CCI+HS (p<0.05 at 24 h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.
-
In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. ⋯ This increase was associated with an increase in phospho-CREB levels (p<0.021), and brain-derived neurotrophic factor (BDNF) expression (p<0.0006). In conclusion, estrone given acutely after injury increases the signaling of protective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.