Journal of neurotrauma
-
Journal of neurotrauma · May 2012
Comparative StudyStatins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach.
Traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) are leading causes of neurological mortality and disability in the U. S. However, therapeutic options are limited and clinical management remains largely supportive. ⋯ Administration of rosuvastatin following TBI was also associated with downregulation of inflammatory gene expression in the brain. Following ICH, treatment with simvastatin 1 mg/kg was associated with the greatest improvement in functional outcomes, an effect that was independent of hemorrhage volume. Clinically relevant models of acute brain injury may be used to define variables such as optimal statin and dosing paradigms to facilitate the rational design of pilot clinical trials.
-
Journal of neurotrauma · May 2012
Preventing flow-metabolism uncoupling acutely reduces axonal injury after traumatic brain injury.
We have previously presented evidence that the development of secondary traumatic axonal injury is related to the degree of local cerebral blood flow (LCBF) and flow-metabolism uncoupling. We have now tested the hypothesis that augmenting LCBF in the acute stages after brain injury prevents further axonal injury. Data were acquired from rats with or without acetazolamide (ACZ) that was administered immediately following controlled cortical impact injury to increase cortical LCBF. ⋯ Furthermore, early LCBF augmentation prevented the injury-associated increase in the number of stained axons from 3-24 h. Additional robust stereological analysis of impaired axonal transport and neurofilament compaction in the corpus callosum and cingulum underlying the injury core confirmed the amelioration of β-APP axon density, and showed a trend, but no significant effect, on RMO14-positive axons. These data underline the importance of maintaining flow-metabolism coupling immediately after injury in order to prevent further axonal injury, in at least one population of injured axons.
-
There has recently been a call for the adoption of comparative effectiveness research (CER) and related research approaches for studying traumatic brain injury (TBI). These methods allow researchers to compare the effectiveness of different therapies in producing patient-oriented outcomes of interest. Heretofore, the only measures by which to compare such therapies have been mortality and rate of poor outcome. ⋯ No consistent effect or age, gender, or years of education was seen. As expected, QOL decreased with functional outcome as described by the GOSE. The results of this study will provide the groundwork for future groups seeking to apply CER methods to clinical studies of TBI.
-
Journal of neurotrauma · May 2012
Effect of blast exposure on the brain structure and cognition in Macaca fascicularis.
Blast injury to the brain is one of the major causes of death and can also significantly affect cognition and physical and psychological skills in survivors of blast. The complex mechanisms via which blast injury causes impairment of cognition and other symptoms are poorly understood. In this study, we investigated the effects of varying degrees of primary blast overpressure (BOP; 80 and 200 kPa) on the pathophysiological and magnetic resonance imaging (MRI) changes and neurocognitive performance as assessed by the monkey Cambridge Neuropsychological Test Automated Battery (mCANTAB) in non-human primates (NHP). ⋯ Increased apoptosis appeared to involve astrocytes and oligodendrocytes in the animals following blast exposure. The small sample size could have contributed to the non-significant outcome in cognitive performance post-blast and limited quantitative analyses. Nevertheless, the study has provided initial descriptive changes for establishing a primary BOP threshold for brain injury to serve as a useful platform for future investigations that aim to estimate brain injury potential and set safe limits of exposure.
-
Journal of neurotrauma · May 2012
Riluzole treatment reduces motoneuron death induced by axotomy in newborn rats.
Nerve injury in neonatal rats leads to considerable motoneuron death. We investigated whether treatment with riluzole (a presynaptic inhibitor of glutamate release) is able to enhance survival of motor units (MUs) in the slow soleus (Sol) and fast extensor digitorum longus (EDL) muscles after sciatic nerve crush in newborn rats. Examination of 3- to 4-month-old rats revealed a beneficial effect of riluzole treatment after injury carried out on the first day after birth. ⋯ In rats with nerve injury carried out on the second day after birth, increased MU survival occurred only in the Sol. We conclude that although riluzole treatment can rescue motoneurons destined to die and improve muscle performance, its beneficial effect is age-dependent, and the difference between the rescue of Sol and EDL MUs may be due to the slower maturation of motoneurons to soleus muscle. These findings have important implications regarding the motoneuron properties required for riluzole's beneficial effect.