Journal of neurotrauma
-
Journal of neurotrauma · Jan 2012
Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.
Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. ⋯ These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.
-
Journal of neurotrauma · Jan 2012
Near infrared transcranial laser therapy applied at various modes to mice following traumatic brain injury significantly reduces long-term neurological deficits.
Near-infrared transcranial laser therapy (TLT) has been found to modulate various biological processes including traumatic brain injury (TBI). Following TBI in mice, in this study we assessed the possibility of various near-infrared TLT modes (pulsed versus continuous) in producing a beneficial effect on the long-term neurobehavioral outcome and brain lesions of these mice. TBI was induced by a weight-drop device, and neurobehavioral function was assessed from 1 h to 56 days post-trauma using the Neurological Severity Score (NSS). ⋯ The percentage of surviving mice that demonstrated full recovery at 56 days post-CHI (NSS=0, as in intact mice) was the highest (63%) in the group that had received TLT in the PW mode at 100 Hz. In addition, magnetic resonance imaging (MRI) analysis demonstrated significantly smaller infarct lesion volumes in laser-treated mice compared to controls. Our data suggest that non-invasive TLT of mice post-TBI provides a significant long-term functional neurological benefit, and that the pulsed laser mode at 100 Hz is the preferred mode for such treatment.
-
Journal of neurotrauma · Jan 2012
Cell-free DNA as a marker for prediction of brain damage in traumatic brain injury in rats.
Traumatic brain injury (TBI) is a major cause of morbidity and mortality, and early predictors of neurological outcomes are of great clinical importance. Cell free DNA (CFD), a biomarker used for the diagnosis and monitoring of several diseases, has been implicated as a possible prognostic indicator after TBI. The purpose of this study was to determine the pattern and timing of CFD levels after TBI, and whether a relationship exists between the level of CFD and brain edema and neurological outcomes. ⋯ In this study, we demonstrated an increase in CFD levels after TBI, as well as a correlation between CFD levels and brain edema and NSS. CFD levels may provide a quick, reliable, and simple prognostic indicator of neurological outcome in animals after TBI. Its role in humans has not been clearly elucidated, but has potentially significant clinical implications.
-
Journal of neurotrauma · Jan 2012
Lithium ameliorates neurodegeneration, suppresses neuroinflammation, and improves behavioral performance in a mouse model of traumatic brain injury.
Although traumatic brain injury (TBI) is recognized as one of the leading causes of death from trauma to the central nervous system (CNS), no known treatment effectively mitigates its effects. Lithium, a primary drug for the treatment of bipolar disorder, has been known to have neuroprotective effects in various neurodegenerative conditions such as stroke. Until this study, however, it has not been investigated as a post-insult treatment for TBI. ⋯ As for behavioral outcomes, lithium treatment reduced anxiety-like behavior in an open-field test, and improved short- and long-term motor coordination in rotarod and beam-walk tests. Lithium robustly increased serine phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that the underlying mechanisms responsible for lithium's protective effects are triggered by increasing phosphorylation of this kinase and thereby inhibiting its activity. Our results support the notion that lithium has heretofore unrecognized capacity to mitigate the neurodegenerative effects and improve functional outcomes in TBI.
-
Journal of neurotrauma · Jan 2012
A novel animal model of closed-head concussive-induced mild traumatic brain injury: development, implementation, and characterization.
Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). While single concussions result in short-term neurologic dysfunction, multiple concussions can result in cumulative damage and increased risk for neurodegenerative disease. Despite the prevalence of concussion, knowledge about what occurs in the brain following this injury is limited, in part due to the limited number of appropriate animal research models. ⋯ Depending on the injury location and the application of the helmet, PCI-induced injuries ranged from severe (i.e., head injury with subdural hematomas, intracranial hemorrhage, and brain tissue damage), to mild (no head injury, intracranial hemorrhage, or gross morphological pathology). Although no gross pathology was evident in mild PCI-induced injury, the following protein changes and behavioral abnormalities were detected between 1 and 24 h after PCI injury: (1) upregulation of glial fibrillary acidic protein (GFAP) in hippocampal regions; (2) upregulation of ubiquitin carboxyl-terminal hydrolase L1 (UCHL-1) in cortical tissue; and (3) significant sensorimotor abnormalities. Overall, these results indicated that this PCI model was capable of replicating salient pathologies of a clinical concussion, and could generate reproducible and quantifiable outcome measures.