Journal of neurotrauma
-
Journal of neurotrauma · Jan 2012
Short-duration treatment with the calpain inhibitor MDL-28170 does not protect axonal transport in an in vivo model of traumatic axonal injury.
Traumatic axonal injury is characterized by early cytoskeletal proteolysis and disruption of axonal transport. Calpain inhibition has been shown to protect axons in rodent models of traumatic brain injury. However, in these models, both white and gray matter are injured, making it difficult to determine if calpain inhibitors are directly protecting injured axons. ⋯ Retrograde axonal transport measured by Fluorogold® labeling of retinal ganglion cells was significantly impaired after stretch injury. However, there was no difference in the number of Fluorogold-labeled cells in the vehicle vs. drug treatment groups. These results suggest that early short-duration calpain inhibitor therapy with MDL-28170 is not an effective strategy to prevent disruption of axonal transport following isolated axonal stretch injury in the CNS.
-
Journal of neurotrauma · Jan 2012
Traumatic brain injury causes an FK506-sensitive loss and an overgrowth of dendritic spines in rat forebrain.
Traumatic brain injury (TBI) causes both an acute loss of tissue and a progressive injury through reactive processes such as excitotoxicity and inflammation. These processes may worsen neural dysfunction by altering neuronal circuitry beyond the focally-damaged tissue. One means of circuit alteration may involve dendritic spines, micron-sized protuberances of dendritic membrane that support most of the excitatory synapses in the brain. ⋯ These results, together with those of a companion study, indicate an FK506-sensitive mechanism of dendritic spine loss in the TBI model. Furthermore, by 1 week after TBI, spine density had increased substantially above control levels, bilaterally in CA1 and CA3 and ipsilaterally in dDG. The apparent overgrowth of spines in CA1 is of particular interest, as it may explain previous reports of abnormal and potentially epileptogenic activity in this brain region.
-
Journal of neurotrauma · Jan 2012
High-strain-rate brain injury model using submerged acute rat brain tissue slices.
Blast-induced traumatic brain injury (bTBI) has received increasing attention in recent years due to ongoing military operations in Iraq and Afghanistan. Sudden impacts or explosive blasts generate stress and pressure waves that propagate at high velocities and affect sensitive neurological tissues. The immediate soft tissue response to these stress waves is difficult to assess using current in vivo imaging technologies. ⋯ Injury at 4 and 6 h was quantified using Fluoro-Jade C. Neuronal injury due to PSHPB testing was found to be significantly greater than injury associated with the tissue slice paradigm alone. While large pressures and strains were encountered for these tests, this system provides a controllable test environment to study injury to submerged brain slices over a range of strain rate, pressure, and strain loads.
-
Journal of neurotrauma · Jan 2012
Near infrared transcranial laser therapy applied at various modes to mice following traumatic brain injury significantly reduces long-term neurological deficits.
Near-infrared transcranial laser therapy (TLT) has been found to modulate various biological processes including traumatic brain injury (TBI). Following TBI in mice, in this study we assessed the possibility of various near-infrared TLT modes (pulsed versus continuous) in producing a beneficial effect on the long-term neurobehavioral outcome and brain lesions of these mice. TBI was induced by a weight-drop device, and neurobehavioral function was assessed from 1 h to 56 days post-trauma using the Neurological Severity Score (NSS). ⋯ The percentage of surviving mice that demonstrated full recovery at 56 days post-CHI (NSS=0, as in intact mice) was the highest (63%) in the group that had received TLT in the PW mode at 100 Hz. In addition, magnetic resonance imaging (MRI) analysis demonstrated significantly smaller infarct lesion volumes in laser-treated mice compared to controls. Our data suggest that non-invasive TLT of mice post-TBI provides a significant long-term functional neurological benefit, and that the pulsed laser mode at 100 Hz is the preferred mode for such treatment.
-
Journal of neurotrauma · Jan 2012
Progesterone increases circulating endothelial progenitor cells and induces neural regeneration after traumatic brain injury in aged rats.
Vascular remodeling plays a key role in neural regeneration in the injured brain. Circulating endothelial progenitor cells (EPCs) are a mediator of the vascular remodeling process. Previous studies have found that progesterone treatment of traumatic brain injury (TBI) decreases cerebral edema and cellular apoptosis and inhibits inflammation, which in concert promote neuroprotective effects in young adult rats. ⋯ Progesterone treatment significantly improved neurological outcome after TBI measured by the modified neurological severity score, Morris Water Maze and the long term potentiation in the hippocampus as well as increased the circulating EPC levels compared to TBI controls (p<0.05). Progesterone treatment also significantly increased CD34 and CD31 positive cell number and vessel density in the injured brain compared to TBI controls (p<0.05). These data indicate that progesterone treatment of TBI improves multiple neurological functional outcomes, increases the circulating EPC level, and facilitates vascular remodeling in the injured brain after TBI in aged rats.