Journal of neurotrauma
-
Journal of neurotrauma · Dec 2011
Comparative StudyImpaired arpeggio movement in skilled reaching by rubrospinal tract lesions in the rat: a behavioral/anatomical fractionation.
Spinal cord injury damaging the rubrospinal tract (RST) interferes with skilled forelimb movement, but identification of the precise role of the RST in this behavior is impeded by the difficulty of surgically isolating the RST from other pathways running within the lateral funiculus (LF). The present study used a skilled reaching task and a behavioral/anatomical dissection method to identify the contribution of the RST to skilled forelimb movement. Rats were trained on the skilled reaching task and subjected to lesions of the LF. ⋯ Only the arpeggio movement was compromised after small LF lesions. The results show that not only does the LF contribute to skilled reaching, but because the RST was likely to have been damaged in all lesion groups, the RST is more involved in hand rotation than in digit use. The results are discussed in relation to the fiber tracts that are likely to be damaged in the different LF lesion groups.
-
Journal of neurotrauma · Dec 2011
Comparative StudyNeuroprotection and sensorimotor functional improvement by curcumin after intracerebral hemorrhage in mice.
Previous studies revealed that curcumin is neuroprotective in diseases of the central nervous system such as cerebral ischemia and traumatic brain injury. However, the effect of curcumin on intracerebral hemorrhage remains unclear. We, therefore, investigated the pre-clinical effect of curcumin treatment on neurological outcomes following intracerebral hemorrhage, using a mouse model. ⋯ Immunostaining showed that tight junction continuity around the hematoma was better sustained in curcumin-treated mice than in vehicle-treated mice. At 24 h, the number of matrix metalloproteinase-positive cells was significantly reduced by curcumin (p<0.05). Our study suggests that curcumin ameliorates intracerebral hemorrhage damage by preventing matrix metalloproteinase-mediated blood-brain barrier damage and brain edema, which might provide therapeutic potential for intracerebral hemorrhage.
-
Journal of neurotrauma · Dec 2011
Comparative StudySpontaneous regeneration of the serotonergic descending innervation in the sea lamprey after spinal cord injury.
In contrast to mammals, lampreys are capable of recovering apparently normal locomotion after complete spinal cord transection, and the spinal axons regenerate selectively in their correct paths. Descending serotonergic projections to the spinal cord play a role in the modulation of locomotion at spinal levels in both mammals and lampreys. In this study, we used combined immunofluorescence and tract-tracing techniques to show that in the sea lamprey, serotonergic descending neurons of the caudal rhombencephalon (vagal nucleus) regenerate their axons across the lesion site after complete spinal cord transection. ⋯ Triple-labeled cells were observed in the vagal nucleus, indicating that at least part of the reinnervation corresponds to true regeneration. This study provides a new and interesting model for investigating the intrinsic molecular mechanisms involved in regeneration of the serotonergic descending axons in vertebrates. Use of this model may provide valuable information for proposing new therapies for patients with spinal cord injury.
-
Journal of neurotrauma · Dec 2011
Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood-brain barrier function after traumatic brain injury.
Serum S100B elevations accurately reflect blood-brain barrier (BBB) damage. Because S100B is also present in peripheral tissues, release of this protein may not be specific to central nervous system (CNS) injury. Ubiquitin C-terminal hydrolase 1 (UCHL1), and phosphorylated neurofilament heavy chain (pNF-H) are found exclusively in neurons, but their relationship to BBB dysfunction has not been determined. ⋯ We conclude that serum concentrations of UCHL1 are associated with abnormal BBB status 12 h after moderate to severe TBI. This relationship is similar to that observed between serum S100B and Q(A,) despite the fact that S100B may be released from peripheral tissues after multi-trauma. We conclude that peripheral release of S100B after multi-trauma is probably negligible and that UCHL1 may have some utility to monitor BBB disruption following TBI.
-
Journal of neurotrauma · Dec 2011
Comparative StudyElevated blood pressure aggravates intracerebral hemorrhage-induced brain injury.
Elevated blood pressure (BP) is commonly seen in patients with intracerebral hemorrhage (ICH), and is independently associated with poor functional outcomes. Little is known about how elevated BP influences ICH-related brain injury. In the present study, we investigated the physiological and brain histological changes, as well as functional recovery following ICH in renovascular hypertensive rats. ⋯ The modified limb placing tests were done weekly for 3 weeks. In line with the histological damage, elevated BP worsened neurological deficits. These results suggest that ICH in the hypertensive rats mimics the clinical scenario of hypertensive ICH and may provide a platform to study the mechanisms of ICH-induced brain injury and potential therapies for ICH.