Journal of neurotrauma
-
Several key biological mechanisms of traumatic injury to axons have been elucidated using in vitro stretch injury models. These models, however, are based on the experimentation of single cultures keeping productivity slow. Indeed, low yield has hindered important and well-founded investigations requiring high throughput methods such as proteomic analyses. ⋯ Data also confirmed that the pressure pulse was distributed evenly throughout the pressure chambers and therefore to each injury well. Importantly, the relationship between substrate deformation and applied pressure was consistent among the multiple wells and displayed a predictable linear behavior in each module. These data confirm that this multi-well system performs as well as currently used stretch injury devices and can undertake high throughput studies that are needed across the field of neurotrauma research.
-
Journal of neurotrauma · Nov 2011
Comparative StudyLive imaging of axon stretch growth in embryonic and adult neurons.
Strategies for nervous system repair arise from knowledge of growth mechanisms via a growth cone. The distinctive process of axon stretch growth is a robust, long-term growth that may reveal new pathways to accelerate nerve repair. Here, a live imaging bioreactor was engineered to closely explore cellular events initiated by applied tension. ⋯ Surprisingly, axons recovered and were capable of subsequent stretch growth. When tension was completely released (?5% strain), stretch grown axons retracted at rates up to 6.1??m/sec and slowed as resting tension was restored. This ability to assess the process of axon stretch growth in real time will allow detailed study of how tension can be used to drive axonal growth and retraction.
-
Journal of neurotrauma · Nov 2011
Blast-induced color change in photonic crystals corresponds with brain pathology.
A high incidence of blast exposure is a 21st century reality in counter-insurgency warfare. However, thresholds for closed-head blast-induced traumatic brain injury (bTBI) remain unknown. Moreover, without objective information about relative blast exposure, warfighters with bTBI may not receive appropriate medical care and may remain in harm's way. ⋯ With prototype BID arrays affixed to the animals, we found that BID color changes corresponded with subtle brain pathologies, including neuronal degeneration and reactive astrocytosis. These subtle changes were most notable in the dentate gyrus of the hippocampus, cerebral cortex, and cerebellum. These data demonstrate the feasibility of using a materials-based, power-free colorimetric BID as the first self-contained blast sensor calibrated to correspond with brain pathology.
-
Journal of neurotrauma · Nov 2011
Comparative StudyA detailed viscoelastic characterization of the P17 and adult rat brain.
Brain is a morphologically and mechanically heterogeneous organ. Although rat brain is commonly used as an experimental neurophysiological model for various in vivo biomechanical studies, little is known about its regional viscoelastic properties. To address this issue, we have generated viscoelastic mechanical property data for specific anatomical regions of the P17 and adult rat brain. ⋯ All models fit the data equally with no significant differences between them (F-test; p>0.05). The F-test was also used to statistically determine that a Prony series with three time-dependent parameters accurately fit the data with no added benefit from additional terms. The age- and region-dependent rat brain viscoelastic properties presented here will help inform future biomechanical models of the rat brain with specific and accurate regional mechanical property data.
-
Journal of neurotrauma · Nov 2011
Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate.
Traumatic brain injury (TBI) results from cell dysfunction or death following supra-threshold physical loading. Neural plasmalemma compromise has been observed following traumatic neural insults; however, the biomechanical thresholds and time-course of such disruptions remain poorly understood. In order to investigate trauma-induced membrane disruptions, we induced dynamic strain fields (0.50 shear or compressive strain at 1, 10, or 30?sec(?1) strain rate) in 3-D neuronal-astrocytic co-cultures (>500??m thick). ⋯ At 48?h post-insult, cell death increased significantly in the high-strain-rate group, but not after quasi-static loading, suggesting that cell survival relates to the initial extent of transient structural compromise. Cells were more sensitive to bulk shear deformation than compression with respect to acute permeability changes and subsequent cell survival. These results provide insight into the temporally varying alterations in membrane stability following traumatic loading and provide a basis for elucidating physical cellular tolerances.