Journal of neurotrauma
-
Journal of neurotrauma · Oct 2011
Tightly coupled repetitive blast-induced traumatic brain injury: development and characterization in mice.
A mouse model of repeated blast exposure was developed using a compressed air-driven shock tube, to study the increase in severity of traumatic brain injury (bTBI) after multiple blast exposures. Isoflurane anesthetized C57BL/6J mice were exposed to 13.9, 20.6, and 25 psi single blast overpressure (BOP1) and allowed to recover for 5 days. BOP1 at 20.6 psi showed a mortality rate of 2% and this pressure was used for three repeated blast exposures (BOP3) with 1 and 30 min intervals. ⋯ Rota Rod behavioral test showed a significant decrease in performance at 10 rpm following BOP1 or BOP3 at 2 h post-blast, which gradually recovered during the 5 days. At 20 rpm, the latency to fall was significantly decreased in both BOP1 and BOP3 animals and it did not recover in the majority of the animals through 5 days of testing. These data suggest that repeated blast exposures lead to increased impairment severity in multiple neurological parameters of TBI in mice.
-
Journal of neurotrauma · Sep 2011
A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas.
The objective was to study the correlations and the differences in glucose metabolism between the thalamus and cortical structures in a sample of severe traumatic brain injury (TBI) patients with different neurological outcomes. We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). The patients were divided into three groups: a vegetative or minimally-conscious state (MCS&VS) group (n=17), which included patients who were in a vegetative or a minimally conscious state; an In-post-traumatic amnesia (In-PTA) group (n=12), which included patients in PTA; and an Out-PTA group (n=20), which included patients who had recovered from PTA. ⋯ Voxel-based analysis suggests a functional correlation between these four areas, and decreased metabolism was associated with less favorable outcomes. Higher levels of activation of the cortico-cortical connections appear to be related to better neurological condition. Differences in the thalamo-cortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.
-
Journal of neurotrauma · Sep 2011
Anti-inflammatory treatments during the chronic phase of spinal cord injury improve locomotor function in adult mice.
Our previous data suggested that ongoing inflammation in the spinal cord 6 weeks following spinal cord injury was detrimental to locomotor function. Others have shown in the acute and sub-acute post-injury phase that microglial/macrophage activation and T regulatory cells are detrimental to recovery. Here, C57BL/6 mice with a moderately severe T9 contusion were injected intravenously daily with minocycline, which reduces microglial/macrophage activation, or with CD25 antibodies, which reduce T regulatory cell function, starting at 6 weeks after injury. ⋯ The effects diminished within 1 week after termination of the treatments, suggesting an ongoing and dynamic inflammatory process. The area of white matter or the inflammatory markers CD68 for activated microglia/macrophages and CD45 for leukocytes were not different between the groups. These data suggest that inflammation during the chronic phase following spinal cord injury reduces conduction through the epicenter, possibly by release of cytokines, and is amenable to treatment for improved neurological function.
-
Journal of neurotrauma · Sep 2011
Cerebrovascular connexin expression: effects of traumatic brain injury.
Traumatic brain injury (TBI) results in dysfunction of the cerebrovasculature. Gap junctions coordinate vasomotor responses and evidence suggests that they are involved in cerebrovascular dysfunction after TBI. Gap junctions are comprised of connexin proteins (Cxs), of which Cx37, Cx40, Cx43, and Cx45 are expressed in vascular tissue. ⋯ Western blot analysis revealed that Cx40 protein expression increased, while Cx45 protein expression decreased 24 h after injury. These studies revealed significant changes in the mRNA and protein expression of specific vascular Cxs after TBI. This is the first demonstration of cell type-related differential expression of Cx mRNA in cerebral arteries, and is a first step in evaluating the effects of TBI on gap junction communication in the cerebrovasculature.