Journal of neurotrauma
-
Journal of neurotrauma · Sep 2011
Frequency analysis unveils cardiac autonomic dysfunction after mild traumatic brain injury.
Long-term mortality is increased after mild traumatic brain injury (mTBI). Central cardiovascular-autonomic dysregulation resulting from subtle, trauma-induced brain lesions might contribute to cardiovascular events and fatalities. We investigated whether there is cardiovascular-autonomic dysregulation after mTBI. ⋯ While supine, mTBI patients had reduced cardiovagal modulation and BRS. Upon standing, their BRS was still reduced, and patients did not withdraw parasympathetic or augment sympathetic modulation adequately. Impaired autonomic modulation probably contributes to cardiovascular irregularities post-mTBI.
-
Journal of neurotrauma · Sep 2011
Detrimental effect of genetic inhibition of B-site APP-cleaving enzyme 1 on functional outcome after controlled cortical impact in young adult mice.
β-Amyloid (Aβ) peptides, most notably associated with Alzheimer's disease, have been implicated in the pathogenesis of secondary injury after traumatic brain injury (TBI). A prior study has demonstrated that blocking the β-site amyloid precursor protein (APP)-cleaving enzyme 1 (Bace1) required for production of Aβ from APP improved functional and histologic outcomes after controlled cortical impact (CCI) in aged mice. However, the majority of patients with severe TBI are young adults under the age of 40. ⋯ Soluble Aβ(40) was significantly lower in ipsilateral hemispheres of Bace1(-/-) than in Bace1(+/+) animals after CCI (0.9 [IQR 0.88-0.94] pmol/g protein versus 3.8 [IQR 2.4-6.0] pmol/g protein; p=0.005). Lesion and hippocampal volumes did not differ between injured groups. The data suggest that therapies targeting Bace1 may need to be tailored according to age and injury severity, as their use may exacerbate functional deficits after TBI in younger or less severely injured patients.
-
Journal of neurotrauma · Sep 2011
Post-injury administration of the mitochondrial permeability transition pore inhibitor, NIM811, is neuroprotective and improves cognition after traumatic brain injury in rats.
Mitochondrial dysfunction is known to play a pivotal role in cell death mechanisms following traumatic brain injury (TBI). N-methyl-4-isoleucine-cyclosporin (NIM811), a non-immunosuppressive cyclosporin A (CsA) analog, inhibits the mitochondrial permeability transition pore (mPTP) and has been shown to be neuroprotective following TBI in mice. However, the translation of the neuroprotective effects of mPTP inhibitors, including CsA and NIM811, into improved cognitive end points has yet to be fully investigated. ⋯ For behavioral studies, rats were administered NIM811 at 15 min and 24 h post-injury, with cognitive testing beginning 10 days post-injury. Mitochondrial studies involved a single injection of NIM811 at 15 min post-injury followed by mitochondrial isolation at 6 h post-injury. The results revealed that the optimal dose of NIM811 improves cognition, improves mitochondrial functioning, and reduces oxidative damage following TBI.
-
Journal of neurotrauma · Sep 2011
MTHFR C677T genotype as a risk factor for epilepsy including post-traumatic epilepsy in a representative military cohort.
The well-studied C677T variant in the methylenetetrahydrofolate reductase (MTHFR) enzyme is a biologically plausible genetic risk factor for seizures or epilepsy. First, plasma/serum levels of homocysteine, a pro-convulsant, are moderately elevated in individuals with the homozygote TT genotype. Furthermore, the TT genotype has been previously linked with migraine with aura-a comorbid condition-and with alcohol withdrawal seizures. ⋯ In our sensitivity analysis, risk was most evident for patients with repeated rather than single medical encounters for epilepsy (crude OR=1.85 [1.14-2.97], p=0.011, adjusted OR=1.95 [1.19-3.19], p=0.008), and particularly for PTE (crude OR=3.14 [1.41-6.99], p=0.005; adjusted OR=2.55 [1.12-5.80], p=0.026). Our early results suggest a role for the common MTHFR C677T variant as a predisposing factors for epilepsy including PTE. Further exploration of baseline homocysteine and folate levels as predictors of seizure risk following traumatic brain injury is warranted.
-
Journal of neurotrauma · Sep 2011
Prevention of both neutrophil and monocyte recruitment promotes recovery after spinal cord injury.
Strategies that block infiltration of leukocytes into the injured spinal cord improve sparing of white matter and neurological recovery. In this article, we examine the dependency of recovery on hematogenous depletion of neutrophils and monocytes. Mice were depleted of neutrophils or monocytes by systemic administration of anti-Ly6G or clodronate-liposomes. ⋯ Matrix metalloproteinase-9, a protease involved in early damage, was most strongly reduced in animals depleted of both leukocyte subsets. Finally, disruption of the blood-spinal cord barrier and abnormal nonheme iron accumulation were reduced only in animals depleted of both neutrophils and monocytes. Together, these findings indicate cooperation between neutrophils and monocytes in mediating early pathogenesis in the contused spinal cord and defining long-term neurological recovery.