Journal of neurotrauma
-
Journal of neurotrauma · Apr 2010
The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats.
Post-traumatic morbidity reduces the quality of life for traumatic brain injury (TBI) survivors by altering neuropsychological function. After midline fluid percussion injury (FPI), diffuse pathology in the ventral posterior thalamus suggests that somatosensory whisker function may be impaired post-injury. The goals of the present study were to design and validate a task to detect injury-induced somatosensory morbidity (Experiment 1), and to evaluate preliminary applications of the task (Experiment 2). ⋯ In Experiment 2, to evaluate applications of the whisker nuisance task, four additional uninjured and brain-injured groups were subjected to mild brain injury only, shaved whiskers after moderate brain injury, repeated whisker nuisance task stimulation after moderate brain injury, or regular opportunities for tactile exploration of an enriched environment after moderate brain injury over 4 weeks post-injury. The whisker nuisance task has the sensitivity to detect mild brain injury (7.7 +/- 1.0), but morbidity was not mitigated by any of the neurorehabilitative interventions. Following diffuse brain injury, the whisker nuisance task is a promising tool to detect post-traumatic morbidity and the efficacy of therapeutic interventions that may restore discrete circuit function in brain-injured patients.
-
Journal of neurotrauma · Apr 2010
Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury.
Abstract In this study we explore if loss of GABAergic inhibitory interneurons in the superficial dorsal horn of the spinal cord contributes to reduced GABAergic tone and neuropathic pain following spinal cord injury (SCI). A moderate contusion injury to T11 resulted in the development of mechanical hyperalgesia and thermal hyperalgesia below the level of the lesion in gad1:GFP mice that were alleviated by IP administration of the GABA transporter antagonist tiagabine. Six weeks following SCI a decreased number of GFP(+) neurons were observed in the dorsal horn of SCI animals relative to sham mice. ⋯ Reversal of post-SCI neuropathic pain by tiagabine suggests that reduced GABAergic tone may contribute to hyperalgesia symptoms. This is supported by the subsequent observation that SCI reduced the number of GFP(+) inhibitory neurons, and the finding that some GABAergic GFP(+) neurons undergo cell death at a time point consistent with the development of neuropathic pain following SCI. Concordantly, reductions in both GAD65 and GAD67 and GAT1 immunoreactivity also support the observation of a loss of GABAergic inhibition and the associated spinal interneurons.
-
Journal of neurotrauma · Apr 2010
Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae.
To evaluate the effects of mild to moderate blast-related traumatic brain injury (TBI) on the microstructure of brain white matter (WM) and neurobehavioral outcomes, we studied 37 veterans and service members (mean age 31.5 years, SD = 7.2; post-injury interval 871.5 days; SD = 343.1), whose report of acute neurological status was consistent with sustaining mild to moderate TBI due to blast while serving in Iraq or Afghanistan. Fifteen veterans without a history of TBI or exposure to blast (mean age 31.4 years, SD = 5.4) served as a comparison group, including seven subjects with extracranial injury (post-injury interval 919.5 days, SD = 455.1), and eight who were uninjured. Magnetic resonance imaging disclosed focal lesions in five TBI participants. ⋯ Correlations of DTI variables with symptom measures were non-significant and inconsistent. Our data do not show WM injury in mild to moderate blast-related TBI in veterans despite their residual symptoms and difficulty in verbal memory. Limitations of the study and implications for future research are also discussed.
-
Journal of neurotrauma · Apr 2010
A new rat model for diffuse axonal injury using a combination of linear acceleration and angular acceleration.
Diffuse axonal injury (DAI) is a frequent form of traumatic brain injury, and is usually associated with long-lasting neurological impairments. A new experimental model was developed in the present study to induce DAI in rats by combining low linear and angular accelerations. In most clinical scenarios, DAI is caused by these two forms of acceleration in combination. ⋯ Although macroscopic damage was observed in all brain-injured animals, axonal damage and hemorrhagic tissue tears were only noted in the animals sustaining the combined accelerations. All rats survived the purely linear or angular acceleration, whereas the mortality rate reached 21.7% following the combined accelerations. These results show that this model is capable of reproducing the major histological and neurological changes that are associated with DAI, and that the combination of low linear and angular accelerations can produce non-linear and synergistic effects to induce moderate/severe DAI.
-
Journal of neurotrauma · Apr 2010
Outcome prediction in mild traumatic brain injury: age and clinical variables are stronger predictors than CT abnormalities.
Mild traumatic brain injury (mTBI) is a common heterogeneous neurological disorder with a wide range of possible clinical outcomes. Accurate prediction of outcome is desirable for optimal treatment. This study aimed both to identify the demographic, clinical, and computed tomographic (CT) characteristics associated with unfavorable outcome at 6 months after mTBI, and to design a prediction model for application in daily practice. ⋯ Furthermore, we showed that the predictive value of a scheme based on a modified Injury Severity Score (ISS), alcohol intoxication, and age equalled the value of one that also included CT characteristics. In fact, it exceeded one that was based on CT characteristics alone. We conclude that, although valuable for the identification of the individual mTBI patient at risk for deterioration and eventual neurosurgical intervention, CT characteristics are imperfect predictors of outcome after mTBI.