Journal of neurotrauma
-
Journal of neurotrauma · Mar 2010
In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury.
Little is known about the molecular events following severe traumatic brain injury (TBI) in humans and to date there are no efficient therapies for the treatment of patients. In this study, the first of its kind in human tissue, a total of 21 post mortem trauma brain samples were analyzed. The inflammatory response within the brain tissue was explored by measuring the expression of various inflammatory cytokines at the mRNA and protein levels. ⋯ This study shows for the first time in human brain tissue that 1) pro-inflammatory mediator protein levels are significantly increased in situ following acute brain injury while anti-inflammatory cytokines protein levels remain unchanged; 2) the cerebral inflammatory response begins within minutes of acute TBI, much earlier than previously thought; 3) IL-6, IL-8, TNF-alpha, and IL-1beta mRNA levels are significantly increased following injury; 4) the rise in cytokine protein level coincides with increased levels of their mRNAs suggesting that traumatic injury elicits an immediate cerebral inflammatory response. Altogether these data confirm and extend previous observations on the release of cytokines in the cerebrospinal fluid of severe TBI patients. Finally, this study highlights the need to characterize the cell source of cytokines and elucidate their mode of action.
-
Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. ⋯ Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain polyamine catabolism are the likely cause of loss of homeostasis in this pathway. The potential for simple therapeutic interventions (e.g., polyamine supplementation or inhibition of polyamine oxidation) is an exciting implication of these studies.
-
Journal of neurotrauma · Mar 2010
Metabolic levels in the corpus callosum and their structural and behavioral correlates after moderate to severe pediatric TBI.
Diffuse axonal injury (DAI) secondary to traumatic brain injury (TBI) contributes to long-term functional morbidity. The corpus callosum (CC) is particularly vulnerable to this type of injury. Magnetic resonance spectroscopy (MRS) was used to characterize the metabolic status of two CC regions of interest (ROIs) (anterior and posterior), and their structural (diffusion tensor imaging; DTI) and neurobehavioral (neurocognitive functioning, bimanual coordination, and interhemispheric transfer time [IHTT]) correlates. ⋯ Inverse corerlations were noted between creatine and posterior FA (r = -0.76), neurocognition (r range -0.22 to -0.71), and IHTT (r = 0.76). Multimodal studies at distinct time points in specific brain structures are necessary to delineate the course of the degenerative and reparative processes following TBI, which allows for preliminary hypotheses about the nature and course of the neural mechanisms of subsequent functional morbidity. This will help guide the future development of targeted therapeutic agents.
-
Journal of neurotrauma · Mar 2010
Diffusion tensor imaging at 3 hours after traumatic spinal cord injury predicts long-term locomotor recovery.
Accurate diagnosis of spinal cord injury (SCI) severity must be achieved before highly aggressive experimental therapies can be tested responsibly in the early phases after trauma. These studies demonstrate for the first time that axial diffusivity (lambda||), derived from diffusion tensor imaging (DTI) within 3 h after SCI, accurately predicts long-term locomotor behavioral recovery in mice. Female C57BL/6 mice underwent sham laminectomy or graded contusive spinal cord injuries at the T9 vertebral level (5 groups, n = 8 for each group). ⋯ The odds of significant locomotor recovery increased by 18% with each 1% increase in normal VLWM measured in the hyperacute phase (odds ratio = 1.18, p = 0.037). The capability of measuring subclinical changes in spinal cord physiology and murine genetic advantages offer an early window into the basic mechanisms of SCI that was not previously possible. Although significant obstacles must still be overcome to derive similar data in human patients, the path to clinical translation is foreseeable and achievable.