Journal of neurotrauma
-
Journal of neurotrauma · Aug 2009
Predicting outcomes of traumatic brain injury by imaging modality and injury distribution.
Early prediction of outcomes after traumatic brain injury (TBI) is often difficult. To improve prognostic accuracy soon after trauma, we compared different radiological modalities and anatomical injury distribution in a group of adult TBI patients. The four methods studied were computed tomography (CT), magnetic resonance imaging (MRI) with T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR) imaging, and susceptibility weighted imaging (SWI). ⋯ In addition, T2WI and FLAIR imaging most consistently discriminated between good and poor outcomes by zonal distribution. While SWI rarely discriminated by outcome, it was very sensitive to intraparenchymal injury and its optimal use in evaluating TBI is unclear. SWI and other new imaging modalities should be further studied to fully evaluate their prognostic utility in TBI evaluation.
-
Journal of neurotrauma · Aug 2009
Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury.
The reactive nitrogen species peroxynitrite (PN) has been suggested to be an important mediator of the secondary oxidative damage that occurs following acute spinal cord injury (SCI). The PN decomposition products nitrogen dioxide (*NO(2)), hydroxyl radical (*OH), and carbonate radical (*CO(3)) are highly reactive with cellular lipids and proteins. In this immunohistochemical study, we examined the temporal (3, 24, and 72 h, and 1 and 2 weeks) and spatial relationships of PN-mediated oxidative damage in the contusion-injured rat thoracic spinal cord (IH device, 200 kdyn, T10) using 3-nitrotyrosine (3-NT), a marker for protein nitration by PN-derived *NO(2) and 4-hydroxynonenal (4-HNE), an indicator of lipid peroxidation (LP) initiated by any of the PN radicals. ⋯ At all time points except 3 h, there was no significant difference in the mean rostral or caudal extent of 3-NT and 4-HNE staining. By 1, and more so at 2 weeks, the longitudinal extent of the oxidative damage staining was greatly decreased. The spatial and temporal overlap of 3-NT and 4-HNE staining supports the concept that PN is involved in both damage produced by lipid peroxidation and protein nitration, and that antioxidant agents that target PN or PN-derived radicals should be effective neuroprotectants for acute SCI if administered during the first post-injury hours.
-
Journal of neurotrauma · Aug 2009
P43/pro-EMAPII: a potential biomarker for discriminating traumatic versus ischemic brain injury.
To gain additional insights into the pathogenic cellular and molecular mechanisms underlying different types of brain injury (e.g., trauma versus ischemia), recently attention has focused on the discovery and study of protein biomarkers. In previous studies, using a high-throughput immunoblotting (HTPI) technique, we reported changes in 29 out of 998 proteins following acute injuries to the rat brain (penetrating traumatic versus focal ischemic). Importantly, we discovered that one protein, endothelial monocyte-activating polypeptide II precursor (p43/pro-EMAPII), was differentially expressed between these two types of brain injury. ⋯ Changes in protein expression were assessed by Western blot analysis and immunohistochemistry. Our results indicated that p43/pro-EMAPII was significantly increased in brain tissues, CSF, and plasma following PBBI, but decreased after MCAo injury compared to their respective sham control samples. This differential expression of p43/pro-EMAPII may be a useful injury-specific biomarker associated with the underlying pathologies of traumatic versus ischemic brain injury, and provide valuable information for directing injury-specific therapeutics.
-
Journal of neurotrauma · Aug 2009
Traumatic brain injury and intestinal dysfunction: uncovering the neuro-enteric axis.
Traumatic brain injury (TBI) can lead to several physiologic complications including gastrointestinal dysfunction. Specifically, TBI can induce an increase in intestinal permeability, which may lead to bacterial translocation, sepsis, and eventually multi-system organ failure. However, the exact mechanism of increased intestinal permeability following TBI is unknown. ⋯ Expression of ZO-1 was decreased by 49% relative to sham animals (p < 0.02), whereas expression of occludin was decreased by 73% relative to sham animals (p < 0.001). An increase in intestinal permeability corresponds with decreased expression of tight junction proteins ZO-1 and occludin following TBI. Expression of intestinal tight junction proteins may be an important factor in gastrointestinal dysfunction following brain injury.
-
Journal of neurotrauma · Aug 2009
Increased cerebral uptake of [18F]fluoro-deoxyglucose but not [1-14C]glucose early following traumatic brain injury in rats.
Following experimental and clinical traumatic brain injury (TBI), the local cerebral metabolic rate of glucose (lCMR(Glc)) is commonly estimated using the 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) method. The adequate estimation of lCMR(Glc) using FDG requires a correction factor, the lumped constant (LC), to convert FDG net uptake into lCMR(Glc). The LC, and thus lCMR(Glc) calculations, require a steady-state that may be disrupted following TBI. ⋯ At 12 h following FPI, the ipsilateral FDG and [1-(14)C]glucose uptake were decreased in the cortex and hippocampus, and the ipsilateral cortical ATP concentration was decreased in comparison to sham-injured controls (p < 0.05). Under the present experimental conditions, the rate of cerebral uptake of FDG and of [1-(14)C]glucose differed, and indicated that following TBI, regional changes in the LC may occur in the immediate, but not in the late, post-injury phase. These results should be considered when interpreting results obtained using FDG for the estimation of lCMR(Glc) early following experimental TBI.