Journal of neurotrauma
-
Journal of neurotrauma · Aug 2008
Effect of cervical dorsolateral funiculotomy on reach-to-grasp function in the rat.
Cervical spinal cord injury (SCI) can severely impair reaching and grasping ability, and several descending systems, including the rubrospinal tract and corticospinal tract, have been implicated in the control of reach-to-grasp movements. The primary aim of this study was to characterize further the forelimb deficits associated with a cervical dorsolateral funiculotomy, which ablates the rubrospinal tract but spares the dorsal and ventral corticospinal tract in the rat. Adult female rats that preferred to use their right forelimb to reach for single pellets received a lesion to the right cervical dorsolateral funiculus between the C3-4 dorsal roots. ⋯ Quantitative kinematics also revealed a reduction in digit abduction during the reach, which persisted throughout the 8-week post-SCI period. Tests of reach-to-grasp function, therefore, were more sensitive than a test of gross forelimb usage after cervical dorsolateral funiculotomy and did not show recovery over the 8-week survival period. We suggest that the staircase test is a useful screening tool for intervention studies because of its ease of implementation, and that the single pellet test is valuable for examining reaching accuracy and detailed kinematics.
-
Traumatic coagulopathy has several possible mechanisms. In traumatic brain injury (TBI), the principal process involves the release of tissue factor (TF). There is no agreement how common this mechanism is following general trauma. ⋯ Traumatic coagulopathy can be explained at least in part by TF release into the general circulation with activation of the coagulation cascade in both TBI and non-TBI. We hypothesize that the different time courses of coagulopathy represented by PT values in these populations were due to reconstitution of the blood-brain barrier, although further investigation is warranted. Peripheral hematologic studies may not reflect persistent coagulopathy in cerebral circulation.
-
Journal of neurotrauma · Jul 2008
Agrin expression during synaptogenesis induced by traumatic brain injury.
Interaction between extracellular matrix proteins and regulatory proteinases can mediate synaptic integrity. Previously, we documented that matrix metalloproteinase 3 (MMP-3) expression and activity increase following traumatic brain injury (TBI). We now report protein and mRNA analysis of agrin, a MMP-3 substrate, over the time course of trauma-induced synaptogenesis. ⋯ By contrast, MK-801 in the combined insult failed to significantly change 7-day agrin transcript, mRNA levels remaining elevated over uninjured sham cases. Together, these results suggest that agrin plays an important role in the sprouting phase of reactive synaptogenesis, and that both its expression and distribution are correlated with extent of successful recovery after TBI. Further, when pathogenic conditions which induce synaptic plasticity are reduced, increase in agrin mRNA is attenuated.
-
The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. ⋯ Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and assessment tools were discussed. Recommendations were made for enhancing the utility of available or emerging tools in order to facilitate implementation of a pathoanatomic classification approach for clinical trials.
-
Journal of neurotrauma · Jul 2008
Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol.
Although changes of cerebral blood flow (CBF) in and around traumatic contusions are well documented, the role of CBF for the delayed death of neuronal cells in the traumatic penumbra ultimately resulting in secondary contusion expansion remains unclear. The aim of the current study was therefore to investigate the relationship between changes of CBF and progressive peri-contusional cell death following traumatic brain injury (TBI). CBF and contusion size were measured in C57Bl6 mice under continuous on-line monitoring of (ETp)CO2 before, and at 15 min and 24 h following controlled cortical impact by 14C-iodoantipyrine autoradiography (IAP-AR; n = 5-6 per group) and by Nissl staining, respectively. ⋯ Within 24 h after TBI, CBF recovered to normal values in all brain areas except the contusion where it remained reduced by more than 90% (p < 0.001). Contusion volume expanded from 24.9 to 35.5 mm3 (p < 0.01) from 15 min to 24 h after trauma (+43%), whereas the area of severe ischemia (CBF < 10%) showed only a minimal (+13%) and not significant increase (22.3 to 25.1 mm3). The current data therefore suggest that the delayed secondary expansion of a cortical contusion following traumatic brain injury may not be caused by a reduction of CBF alone.