Journal of neurotrauma
-
Journal of neurotrauma · Jun 2007
Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by (1)H NMR spectroscopy.
Experimental models of traumatic brain injury (TBI) provide a useful tool for understanding the cerebral metabolic changes induced by this pathological condition. Here, we report on the time course of changes in cerebral metabolites after TBI and its correlation with early brain morphological changes using a combination of high-resolution proton magnetic resonance spectroscopy ((1)H MRS) and magnetic resonance imaging (MRI). Adult male Sprague-Dawley rats were subjected to closed head impact and examined by MRI at 1, 9, 24, 48, and and 72 h after the injury. ⋯ The third one involved creatine-phosphocreatine, N-acetylaspartate, and myo-inositol, with concentrations peaking 48 h after the injury. A multivariate stepwise discriminant analysis revealed that the combination of the organic osmolytes taurine and myo-inositol allowed optimal discrimination among the different time groups. Our findings suggest that the profile of some specific brain molecules that play a role as organic osmolytes can be used to follow-up the progression of the early diffuse brain edema response induced by TBI.
-
Journal of neurotrauma · Jun 2007
Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury.
It is known that calpain activation is involved in human traumatic brain injury (TBI) and that calpain inhibition can have neuroprotective effects on both gray matter and white matter injury of TBI models. However, the role of calpain activation in the corpus callosum remains unclear and requires elucidation given its potential clinical relevance. We evaluated the neuroprotective effects of calpain inhibitor MDL-28170 on corpus callosum function and structural destruction using a fluid percussion injury (FPI) model. ⋯ Our data indicated that calpain inhibitor MDL-28170 is an effective neuroprotectant for axonal injury in corpus callosum following FPI with a therapeutic time window up to 4 hours. Although delayed treatment (2 or 4 h post FPI) was effective in protecting the axonal structure, the axons saved may not be as functional as normal fibers. Multiple drug administrations may be necessary for achieving a persisting effectiveness of this compound.
-
Journal of neurotrauma · May 2007
FasL, Fas, and death-inducing signaling complex (DISC) proteins are recruited to membrane rafts after spinal cord injury.
The Fas/CD95 receptor-ligand system plays an essential role in apoptosis that contributes to secondary damage after spinal cord injury (SCI), but the mechanism regulating the efficiency of FasL/Fas signaling in the central nervous system (CNS) is unknown. Here, FasL/Fas signaling complexes in membrane rafts were investigated in the spinal cord of adult female Fischer rats subjected to moderate cervical SCI and sham operation controls. In sham-operated animals, a portion of FasL, but not Fas was present in membrane rafts. ⋯ Moreover, SCI induced expression of Fas in clusters around the nucleus in both neurons and astrocytes. The formation of the DISC signaling platform leads to rapid activation of initiator caspase-8 and effector caspase-3, and the modification of signaling intermediates such as FADD and cFLIP(L). Thus, FasL/Fas-mediated signaling after SCI is similar to Fas expressing Type I cell apoptosis.
-
Journal of neurotrauma · May 2007
Post-Injury Administration of Mitochondrial Uncouplers Increases Tissue Sparing and Improves Behavioral Outcome following Traumatic Brain Injury in Rodents.
Following experimental traumatic brain injury (TBI), a rapid and significant necrosis occurs at the site of injury which coincides with significant mitochondrial dysfunction. The present study is driven by the hypothesis that TBI-induced glutamate release increases mitochondrial Ca(2+)cycling/overload, ultimately leading to mitochondrial dysfunction. Based on this premise, mitochondrial uncoupling during the acute phases of TBI-induced excitotoxicity should reduce mitochondrial Ca(2+) uptake (cycling) and reactive oxygen species (ROS) production since both are mitochondrial membrane potential dependent. ⋯ These results demonstrate that post-injury treatment with mitochondrial uncouplers significantly (p < 0.01) increases cortical tissue sparing ( approximately 12%) and significantly (p< 0.01) improves behavioral outcome following TBI. The mechanism of neuroprotection most likely involves the maintenance of mitochondrial homeostasis by reducing mitochondrial Ca(2+) loading and subsequent mitochondrial dysfunction. These results further implicate mitochondrial dysfunction as an early event in the pathophysiology of TBI and that targeting acute mitochondrial events can result in long-term neuroprotection and improve behavioral outcome following brain injury.
-
Journal of neurotrauma · May 2007
Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury.
Experimental traumatic brain injury (TBI) results in a significant loss of cortical tissue at the site of injury, and in the ensuing hours and days a secondary injury exacerbates this primary injury, resulting in significant neurological dysfunction. The mechanism of the secondary injury is not well understood, but evidence implicates a critical role for mitochondria in this cascade. This mitochondrial dysfunction is believed to involve excitotoxicity, disruption of Ca(2+) homeostasis, production of reactive oxygen species (ROS), ATP depletion, oxidative damage of mitochondrial proteins, and an overall breakdown of mitochondrial bioenergetics. ⋯ In addition, we have also shown that, following TBI, there is a reduction in the activities of pyruvate dehydrogenase (PDH), complex I, and complex IV. These findings demonstrate that, following TBI, several proteins involved in mitochondrial bioenergetics are highly oxidatively modified, which may possibly underlie the massive breakdown of mitochondrial energetics and eventual cell death known to occur in this model. The identification of these proteins provides new insights into the mechanisms that take place following TBI and may provide avenues for possible therapeutic interventions after TBI.