Journal of neurotrauma
-
Journal of neurotrauma · Jun 2005
Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury.
Evidence of injury-induced neurogenesis in the adult hippocampus suggests that an endogenous repair mechanism exists for cognitive dysfunction following traumatic brain injury (TBI). One factor that may be associated with this restoration is S100B, a neurotrophic/mitogenic protein produced by astrocytes, which has been shown to improve memory function. Therefore, we examined whether an intraventricular S100B infusion enhances neurogenesis within the hippocampus following experimental TBI and whether the biological response can be associated with a measurable cognitive improvement. ⋯ Furthermore, spatial learning ability, as assessed by the Morris water maze on day 30-34 post-injury, revealed an improved cognitive performance after S100B infusion (p < 0.05). Collectively, our findings indicate that an intraventricular S100B infusion induces neurogenesis within the hippocampus, which can be associated with an enhanced cognitive function following experimental TBI. These observations provide compelling evidence for the therapeutic potential of S100B in improving functional recovery following TBI.
-
Many survivors of head injury suffer chronic personality changes, such as increased impulsivity and a lack of insight and poor judgment. These changes are well recognized and likely to affect the ability to make decisions. However, systematic investigations into their nature have been limited. ⋯ Examination of the survivors' betting behavior revealed that they responded impulsively compared to controls. This pattern of prolonged decision making and poor quality of decisions is similar to that found in patients with orbitofrontal cortex lesions, whilst impulsive betting has been associated with abnormalities of the dopamine system. These complex deficits in decision making may contribute to difficulties with poor judgment and inhibition in head injury survivors.
-
Journal of neurotrauma · Jun 2005
Histopathological and behavioral characterization of a novel cervical spinal cord displacement contusion injury in the rat.
Cervical contusive trauma accounts for the majority, of human spinal cord injury (SCI), yet experimental use of cervical contusion injury models has been limited. Considering that (1) the different ways of injuring the spinal cord (compression, contusion, and transection) induce very different processes of tissue damage and (2) the architecture of the spinal cord is not uniform, it is important to use a model that is more clinically applicable to human SCI. Therefore, in the current study we have developed a rat model of contusive, cervical SCI using the Electromagnetic Spinal Cord Injury Device (ESCID) developed at Ohio State University (OSU) to induce injury by spinal cord displacement. ⋯ Characterization of the model involved the analysis of the temporal histopathological progression of the injury over 9 weeks using histochemical stains to analyze white and gray mater integrity and immunohistochemistry to examine cellular changes and physiological responses within the injured spinal cord. Accompanying the histological analysis was a comprehensive determination of the behavioral functionality of the animals using a battery of motor tests. Characterization of this novel model is presented to enable and encourage its future use in the design and experimental testing of therapeutic strategies that may be used for human SCI.
-
Journal of neurotrauma · Jun 2005
Progesterone differentially regulates pro- and anti-apoptotic gene expression in cerebral cortex following traumatic brain injury in rats.
Although the administration of progesterone has been shown to be neuroprotective in experimental models of traumatic brain injury (TBI), the mechanisms for this beneficial effect are still poorly understood. The present study examined the effects of progesterone on mRNA and protein levels of the Bcl-2 apoptosis regulatory genes, bax, bad, bcl-2, and bcl-x(L), in cerebral cortex after TBI. Male Sprague-Dawley rats were subjected to either sham surgery or lateral fluid percussion brain injury of moderate severity (2.4-2.6 atm). ⋯ After TBI, progesterone treatment reduced bax and bad mRNA levels in the ipsilateral cerebral cortex of TBI rats, and decreased Bax and Bad protein levels. In addition, bcl-2 and bcl-x(L) mRNA levels, as well as Bcl-2 and Bcl-x(L) protein expression, were increased by progesterone in TBI injured cortex. These data indicate that one of the neuroprotective mechanisms of progesterone may be related to its differential regulation of apoptotic signals.
-
Journal of neurotrauma · Jun 2005
Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry.
We report the rapid discovery of putative protein biomarkers of traumatic brain injury (TBI) by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry (SDS-PAGE-Capillary LC-MS(2)). Ipsilateral hippocampus (IH) samples were collected from naive rats and rats subjected to controlled cortical impact (a rodent model of TBI). ⋯ Confidence in our results was obtained by the presence of several known biomarkers of TBI (including alphaII-spectrin, brain creatine kinase, and neuron-specific enolase) in our data set. These results show that SDS-PAGE prior to in vitro proteolysis and capillary LC-MS(2) is a promising strategy for the rapid discovery of putative protein biomarkers associated with a specific physiological state (i.e., TBI) without a priori knowledge of the molecules involved.