Journal of neurotrauma
-
Journal of neurotrauma · Jan 2005
ReviewTranslational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis.
Microdialysis (MD) was introduced as an intracerebral sampling method for clinical neurosurgery by Hillered et al. and Meyerson et al. in 1990. Since then MD has been embraced as a research tool to measure the neurochemistry of acute human brain injury and epilepsy. In general investigators have focused their attention to relative chemical changes during neurointensive care, operative procedures, and epileptic seizure activity. ⋯ The purpose of this review was to summarize the results of clinical studies using cerebral MD in neurosurgical patients and to discuss the current status of MD as a potential method for use in clinical decision-making. The approach was to focus on adverse neurochemical conditions in the injured human brain and the MD biomarkers used to study those events. Methodological issues that appeared critical for the future success of MD as a routine intracerebral sampling method were addressed.
-
Journal of neurotrauma · Jan 2005
Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury.
Previous studies from our laboratory indicate that traumatic brain injury (TBI) in humans results in proteolysis of neuronally-localized, intracellular microtubule associated protein (MAP)-tau to produce cleaved tau (C-tau). The present study evaluated the utility of C-tau to function as a biomarker of neuronal injury and as a biomarker for evaluating neuroprotectant drug efficacy in a controlled cortical impact model of rat TBI. Brain C-tau was determined in rats subjected to controlled cortical impact-induced mild, moderate or severe levels of TBI. ⋯ In addition, serum C-tau levels were significantly increased 6 h after TBI but not at later time points. These results suggest that C-tau is a reliable, quantitative biomarker for evaluating TBI-induced neuronal injury and a potential biomarker of neuroprotectant drug efficacy in the rat TBI model. Serum data suggests that C-tau levels are dependent both on a compromised blood-brain barrier as well as release of TBI biomarkers from the brain, which has implications for the study of human serum TBI biomarkers.
-
Journal of neurotrauma · Jan 2005
Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC.
Larval lampreys are known to successfully recover normal behavior following spinal cord injury. More recently, we showed temperature can influence functional recovery, with colder temperatures more likely producing behavioral abnormality despite the cold being the animals' normal temperature. Here we analyze the differences associated with temperature effects. ⋯ We propose a relationship between the observed results and functional recovery, but it remains conjectural. The fact that some animals recover normal function suggests plasticity must occur in animals successful in recovering normal function. Thus, the lamprey can be used as a model system to study the adaptive changes that permit or prevent functional recovery.
-
Journal of neurotrauma · Jan 2005
The effect of poloxamer-188 on neuronal cell recovery from mechanical injury.
Neuronal injury resulting from mechanical deformation is poorly characterized at the cellular level. The immediate structural consequences of the mechanical loading lead to a variety of inter- and intra-cellular signaling events that interact on multiple time and length scales. Thus, it is often difficult to establish cause-and-effect relationships such that appropriate treatment strategies can be devised. ⋯ For the most severe injury, cell viability decreased approximately 40% with mechanical trauma compared to sham controls. Treatment of cells with Poloxamer 188 at 15 min post-injury restored long-term viability to control values. These data establish membrane integrity as a novel therapeutic target in the treatment of neuronal injury.
-
Journal of neurotrauma · Jan 2005
Voluntary wheel running improves recovery from a moderate spinal cord injury.
Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. ⋯ Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.