Journal of neurotrauma
-
Journal of neurotrauma · Feb 2005
Chondroitinase ABCI improves locomotion and bladder function following contusion injury of the rat spinal cord.
Chondroitin sulfate proteoglycans are synthesized and deposited in the spinal cord following injury. These proteoglycans may restrict regeneration and plasticity and contribute to the limited recovery seen after an injury. Chondroitinase, a bacterial enzyme that catalyzes the hydrolysis of the chondroitin chains on proteoglycans, has been shown to improve motor and sensory function following partial transection lesions of the spinal cord. ⋯ No significant locomotor differences were observed in the mild injury group. In the moderate injury group, residual urine volumes were reduced with chondroitinase treatment by 2 weeks after injury (p<0.05) and in the severe injury group, by 6 weeks after injury (NS). These results demonstrate that chondroitinase is effective at promoting both somatic and autonomic motor recovery following a clinically relevant contusion spinal cord injury and is a candidate as a therapeutic for human spinal cord injury.
-
Journal of neurotrauma · Feb 2005
Spreading depression expands traumatic injury in neocortical brain slices.
Traumatic brain injury (TBI) is particularly common in young people, generating healthcare costs that can span decades. The cellular processes activated in the first minutes following injury are poorly understood, and the 3-4 h following trauma are crucial for reducing subsequent injury. Spreading depression (SD) is a profound inactivation of neurons and glia lasting 1-2 min that arises focally and migrates outward across gray matter. ⋯ Both tSD and subsequent damage were blocked by the NMDA receptor antagonist MK-801 (100 microM) or the sigma-1 receptor (sigma1R) ligands dextromethorphan (30 microM) or BD-1063 (100 microM). Co-application of the sigma1R antagonist (+)3-PPP with DM reversed the block as did lowering temperature from 35 degrees C to 32 degrees C. This study provides evidence that an event similar to peri-infarct depolarization can arise from an injury site in neocortex within seconds following impact and act to expand the region of acute neuronal damage.
-
Journal of neurotrauma · Jan 2005
Changes in distribution of serotonin induced by spinal injury in larval lampreys: evidence from immunohistochemistry and HPLC.
Larval lampreys are known to successfully recover normal behavior following spinal cord injury. More recently, we showed temperature can influence functional recovery, with colder temperatures more likely producing behavioral abnormality despite the cold being the animals' normal temperature. Here we analyze the differences associated with temperature effects. ⋯ We propose a relationship between the observed results and functional recovery, but it remains conjectural. The fact that some animals recover normal function suggests plasticity must occur in animals successful in recovering normal function. Thus, the lamprey can be used as a model system to study the adaptive changes that permit or prevent functional recovery.
-
Journal of neurotrauma · Jan 2005
ReviewTranslational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis.
Microdialysis (MD) was introduced as an intracerebral sampling method for clinical neurosurgery by Hillered et al. and Meyerson et al. in 1990. Since then MD has been embraced as a research tool to measure the neurochemistry of acute human brain injury and epilepsy. In general investigators have focused their attention to relative chemical changes during neurointensive care, operative procedures, and epileptic seizure activity. ⋯ The purpose of this review was to summarize the results of clinical studies using cerebral MD in neurosurgical patients and to discuss the current status of MD as a potential method for use in clinical decision-making. The approach was to focus on adverse neurochemical conditions in the injured human brain and the MD biomarkers used to study those events. Methodological issues that appeared critical for the future success of MD as a routine intracerebral sampling method were addressed.
-
Journal of neurotrauma · Jan 2005
The effect of poloxamer-188 on neuronal cell recovery from mechanical injury.
Neuronal injury resulting from mechanical deformation is poorly characterized at the cellular level. The immediate structural consequences of the mechanical loading lead to a variety of inter- and intra-cellular signaling events that interact on multiple time and length scales. Thus, it is often difficult to establish cause-and-effect relationships such that appropriate treatment strategies can be devised. ⋯ For the most severe injury, cell viability decreased approximately 40% with mechanical trauma compared to sham controls. Treatment of cells with Poloxamer 188 at 15 min post-injury restored long-term viability to control values. These data establish membrane integrity as a novel therapeutic target in the treatment of neuronal injury.