Journal of neurotrauma
-
Journal of neurotrauma · Mar 2004
Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats.
Recent evidence indicates that estrogen exerts neuroprotective effects in both brain injury and neurodegenerative diseases. We examined the protective effect of estrogen on functional recovery after spinal cord injury (SCI) in rats. 17beta-estradiol (3, 100, or 300 microg/kg) was administered intravenously 1-2 h prior to injury (pre-treatment), and animals were then subjected to a mild, weight-drop spinal cord contusion injury. Estradiol treatment significantly improved hind limb motor function as determined by the Basso-Beattie-Bresnahan (BBB) locomotor open field behavioral rating test. ⋯ Furthermore, 17beta-estradiol significantly increased expression of the anti-apoptotic genes, bcl-2 and bcl-x, after SCI while expression of the pro-apoptotic genes, bad and bax, was not affected by drug treatment. Finally, intravenous administration of 17beta-estradiol (100 microg/kg) immediately after injury (post-treatment) also significantly improved hind limb motor function 19-30 days after SCI compared to vehicle-treated controls. These data suggest that after SCI, 17 beta-estradiol treatment improved functional recovery in the injured rat, in part, by reducing apoptotic cell death.
-
Journal of neurotrauma · Mar 2004
Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice.
Neural stem cells have recently been shown to contribute to the cellular remodeling that occurs following traumatic brain injury (TBI). Potential sources for these stem cells from within the brain include the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus. Using intraventricular injections of the fluorescent vital dye DiO in mice, we demonstrate that the subventricular zone population of stem cells can be reliably labeled and followed over time. ⋯ Using doublelabeling immunohistochemistry with anti-nestin, anti-GFAP, and anti-NeuN antibodies we demonstrate that labeled cells from the subventricular zone contribute primarily to the astroglial scar following injury. We do not observe any contribution to deeper areas of injury including the hippocampus. These data demonstrate that the subventricular zone contributes to brain remodeling following TBI, though neural stem cell sources outside the subventricular zone appear to play reparative roles as well.
-
Journal of neurotrauma · Feb 2004
Nociceptin/orphanin FQ alters prostaglandin cerebrovascular action following brain injury.
Previous studies have observed that fluid percussion brain injury (FPI) elevated the CSF concentration of the opioid nociceptin/orphanin FQ (NOC/oFQ). In separate studies, FPI impaired pial artery dilation to the prostaglandins PGI2 and PGE2. This study was designed to investigate the following: (1) role of NOC/oFQ in impaired dilation to PGI2 and PGE2, (2) the effects of FPI on vasoconstriction to the TXA2 mimic U46619 and PGF2alpha, and (3) the role of NOC/oFQ in such FPI induced effects on U46619 and PGF(2alpha). ⋯ Additionally, these data show that administration of a NOC/oFQ receptor antagonist prevented such FPI associated events. NOC/oFQ administrated in a concentration observed after FPI produced blunted dilator prostaglandin and potentiated vasoconstriction prostaglandin vascular responses under nonbrain injury conditions. Finally, these data suggest that NOC/oFQ alters prostaglandin cerebrovascular action following brain injury.
-
Journal of neurotrauma · Feb 2004
Selective metabolic reduction in gray matter acutely following human traumatic brain injury.
The aim of this study was to determine whether the apparent loss of overall gray-white matter contrast (GM/WM) seen on FDG-PET imaging reflects the differential changes of glucose metabolic rate (CMRglc) in cortical gray mater (GM) and subcortical white mater (WM) following TBI. The clinical significance of the CMRglc GM-to-WM ratio was also evaluated. Nineteen normal volunteers and 14 TBI patients were studied. ⋯ The patients with higher CMRglc GM-to-WM ratios (>1.54) showed good recovery 12 months after TBI. There was a selective CMRglc reduction in cortical GM following TBI. The pathophysiological basis for the reduction in GM-to-WM CMRglc ratio seen on FDG-PET imaging following TBI remains to be determined.
-
Journal of neurotrauma · Feb 2004
Randomized Controlled Trial Clinical TrialRelationships between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age, and hypothermia.
Excitotoxicity and ischemia can result in oxidative stress after TBI. Female sex hormones are hypothesized to be neuroprotective after TBI by affecting multiple mechanisms of secondary injury, including oxidative damage, excitotoxicity and ischemia. Ca2+ mediated oxidative stress increases with age, and hypothermia is known to attenuate secondary injury. ⋯ These results indicate that females have smaller oxidative damage loads than males for a given excitotoxic or ischemic insult and female gonadal hormones may play a role in mediating this neuroprotective effect. These results also suggest that susceptibility to glutamate mediated oxidative damage increases with age and that hypothermia differentially attenuates CSF glutamate versus F2-isoprostane production. Gender and age differences in TBI pathophysiology should be considered when conducting clinical trials in TBI.