Journal of neurotrauma
-
Lubeluzole, a novel nitric oxide synthase (NOS) pathway modulator, was shown to be neuroprotective in cerebral ischemia as studied in animal models and clinical trials. The present study investigated the effect of lubeluzole on contusion volume and brain edema following traumatic brain injury. Sprague-Dawley rats (n = 36) were subjected to cortical impact injury. ⋯ T2-weighted MRI revealed a higher volume of edema at 90 minutes after trauma in treated rats. However, at 6 and 24 hours after trauma, no significant difference was discernible. Under these experimental conditions, lubeluzole fails to exert beneficial effects following experimental traumatic brain injury (TBI).
-
Journal of neurotrauma · Jul 1999
Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluid-percussion brain injury in rats.
This study documents the regional and temporal patterns of glial fibrillary acidic protein (GFAP) RNA and protein expression after parasagittal fluid-percussion (F-P) brain injury (1.7 to 2.2 atm) in male Sprague-Dawley rats. In situ hybridization was conducted in 28 rats with a 35S-labeled antisense riboprobe to GFAP at 0.5, 2, and 6 hours and 1, 3, and 30 days after traumatic brain injury (TBI) or sham procedures. Immunocytochemical staining of GFAP was conducted in 20 rats at 1, 3, 7, and 30 days after TBI or sham procedures. ⋯ At 30 days, GFAP mRNA and protein expression were present within the deeper cortical layers of the lateral somatosensory cortex and lateral thalamus and throughout ipsilateral white matter tracts. These data demonstrate a complex pattern of GFAP mRNA and protein expression within gray and white matter tracts following F-P brain injury. Patterns of GFAP gene expression may be a sensitive molecular marker for evaluating the global response of the brain to focal injury in terms of progressive neurodegenerative as well as regenerative processes.
-
Journal of neurotrauma · Jun 1999
Randomized Controlled Trial Multicenter Study Clinical TrialEffects of the bradykinin antagonist Bradycor (deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Study Group.
A phase II prospective, randomized, double blind clinical trial of Bradycor, a bradykinin antagonist, was conducted at 31 centers within North America in severely brain injured patients. Patients of Glasgow Coma Score (GCS) 3-8 (n = 139) with at least one reactive pupil were randomized to receive either Bradycor, 3 microg/kg/min or placebo as a continuous intravenous infusion for 5 days, with the infusion beginning within 12 h of the injury. The primary objective was to assess the efficacy of a continuous infusion of Bradycor (3.0 mc/kg/min) in preventing elevation of intracranial pressure (ICP). ⋯ There were fewer deaths in the Bradycor group, which had a 28-day all cause mortality of 20% versus 27% on placebo. Patients treated with Bradycor showed a 10.3% improvement in favorable outcome at 3 months and a 12% improvement in dichotomized GOS at 6 months (p = 0.26). The consistent positive trends seen in ICP, TIL, neuropsychological tests, and, most importantly, 3- and 6-month GOS provide supportive evidence that a bradykinin antagonist may play a neuroprotective role in severe brain injury.
-
Journal of neurotrauma · Jun 1999
Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury.
Recent observations concerning presumed calcium-induced mitochondrial damage and focal intraaxonal proteolysis in the pathogenesis of traumatic axonal injury (TAI) have opened new perspectives for therapeutic intervention. Studies from our laboratory demonstrated that cyclosporin A (CsA), a potent inhibitor of Ca2+-induced mitochondrial damage, administered 30 min prior to traumatic brain injury preserved mitochondrial integrity in those axonal foci destined to undergo delayed disconnection. We attributed this neuroprotection to the inhibition by CsA of mitochondrial permeability transition (MPT). ⋯ These results once again suggest that the maintenance of the functional integrity of the mitochondria can prevent TAI, presumably via the preservation of the local energy homeostasis of the axon. Moreover and perhaps more importantly, these studies also demonstrate the efficacy of CsA administration when given in the early posttraumatic period. Collectively, our findings suggest that a therapeutic window exists for the use of drugs targeting mitochondria and energy regulation in traumatic brain injury.
-
Journal of neurotrauma · Jun 1999
Neuroprotective effect of hypothermia on neuronal injury in diffuse traumatic brain injury coupled with hypoxia and hypotension.
It is well established in mechanical head trauma that posttraumatic secondary insults, such as hypoxia and hypotension exacerbate neuronal injury and lead to worse outcome. In this study, the neuroprotective effect of hypothermia on the reduction of supraventricular subcortical neuronal damage was evaluated using an impact-acceleration model of diffuse traumatic brain injury coupled with both moderate and severe periods of hypoxia and hypotension. A total of 135 adult male Sprague-Dawley rats (340-375 g) were divided into three experimental studies: (I) physiological evaluation (n = 36); (II) quantitative analysis of the effect of trauma coupled with moderate and severe hypotension on neuronal damage assessed at 4 (n = 39) and 24 h (n = 24); and (III) the neuroprotective effect of hypothermia following moderate secondary insult (n = 36). ⋯ However, hypothermia provided nearly complete protection against secondary insults, and neuronal damage was equal to that of the trauma alone group (p = 0.42). The results of this study confirm that hypothermia provides remarkable protection against the adverse effects of neuronal damage exacerbated by secondary injury. This study also presents a new model of secondary insult, which can be used experimentally to further define the mechanism of increased vulnerability of the injured brain.