Journal of neurotrauma
-
Journal of neurotrauma · May 1998
Moderate hypothermia for 48 hours after temporary epidural brain compression injury in a canine outcome model.
In a previous study with this dog model, post-insult hypothermia of 31 degrees C for 5 h prevented secondary intraventricular pressure (IVP) rise, but during 35 degrees C or 38 degrees C, one-half of the dogs developed delayed IVP rise to brain death. We hypothesized that 31 degrees C extended to 48 h would prevent brain herniation. Using epidural balloon inflation, we increased contralateral IVP to 62 mm Hg for 90 min. ⋯ The vermis downward shift was 6.8 +/- 3.5 mm in Group 1, versus 4.7 +/- 2.2 mm in Group 2 (p = 0.05). In an adjunctive study, in 4 additional normothermic dogs, hemispheric cerebral blood flow showed post-insult hypoperfusion bilaterally but no evidence of hyperemia preceding IVP rise to brain death. In conclusion, in this model, moderate hypothermia during and for 48 h after temporary epidural brain compression can maintain a low IVP during hypothermia but cannot prevent lethal brain swelling after rewarming and may cause coagulopathy and pulmonary complications.
-
Journal of neurotrauma · May 1998
Relationship between severity of spinal cord injury and abnormalities in neurogenic cardiovascular control in conscious rats.
Abnormal sympathetic tone after spinal cord injury (SCI) initially results in hypotension and is subsequently associated with autonomic dysreflexia characterized by paroxysmal hypertension and bradycardia in response to noxious or visceral stimuli. To evaluate the effect of a clinically relevant compression model of SCI on cardiovascular control in the early postinjury period, we monitored arterial pressure (AP) and heart rate under control resting conditions and after visceral stimulation (colon distension) in conscious rats for 1 week after clip compression injury of the cord at T5. Rats were randomly allocated into 4 groups (n = 8 each): sham-operated, 20, 35, and 50 g injuries. ⋯ These data show that dysfunctional cardiovascular control after SCI is correlated with the severity of injury. Mild and moderate compressive SCI result in transient cardiovascular abnormalities which normalize by 1 week. In contrast, more severe injuries are associated with neurogenic hypotension and autonomic dysreflexia.
-
Journal of neurotrauma · Apr 1998
Rivastigmine, a brain-selective acetylcholinesterase inhibitor, ameliorates cognitive and motor deficits induced by closed-head injury in the mouse.
The effects of Rivastigmine, a novel centrally-acting anticholinesterase agent, were evaluated on cerebral edema, neurological and motor deficits, and impairment of spatial memory induced in mice by closed-head injury (CHI). Severe injury was induced in the left hemisphere of mice under ether anesthesia. Rivastigmine (1 or 2 mg/kg) or saline (10 ml/kg) was injected SC 5 min later. ⋯ The neuroprotective effects of Rivastigmine on brain edema, neurological and motor function, and performance in the Morris water maze were completely antagonized by simultaneous SC injection of either scopolamine (0.5 mg/kg) or mecamylamine (2.5 mg/kg). The antagonists alone had no significant effect on any of these parameters. These data show that the reduction by Rivastigmine of the immediate and long-term sequelae of brain injury are mediated by increased cholinergic activity at both muscarinic and nicotinic receptors.
-
Journal of neurotrauma · Mar 1998
72-kDa heat shock protein and mRNA expression after controlled cortical impact injury with hypoxemia in rats.
As part of the stress response, the 72 kDa heat shock protein (hsp72) is induced in neurons after ischemic and traumatic brain injury (TBI). To examine the stress response after TBI with secondary insult, we examined the regional and cellular expression of hsp72 mRNA and protein after controlled cortical impact (CCI) injury with secondary hypoxemia and mild hypotension in rats. Rats were killed at 6, 8, 24, 72, or 168 h after trauma. ⋯ The regional pattern of hsp72 mRNA induction in neurons was similar to the pattern of protein expression after CCI, with the exceptions that hsp72 mRNA, but not protein, was expressed in the dentate gyrus and the lateral aspect of the CA3 region of the hippocampus (CA3-a). The stress response, as detected by hsp72 expression, is induced in some neurons in some regions that are selectively vulnerable to delayed neuronal death in this model of TBI. The failure to translate some proteins including hsp72 may be associated with delayed neuronal death in certain hippocampal regions after TBI.
-
Journal of neurotrauma · Mar 1998
Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions.
Cognitive deficits are the most enduring and disabling sequelae of human traumatic brain injury (TBI), but quantifying the magnitude, duration, and pattern of cognitive deficits produced by different types of TBI has received little emphasis in preclinical animal models. The objective of the present study was to use a battery of behavioral tests to determine if different impact sites produce different patterns of behavioral deficits and to determine how long behavioral deficits can be detected after TBI. Prior to surgery, rats were trained to criteria on delayed nonmatching to position, radial arm maze, and rotarod tasks. ⋯ Lateral TBI rats exhibited transient deficits in the forelimb placing and in the rotarod test of motor/ambulatory function, but cognitive deficits were apparent throughout the 12-month postsurgery period on tests of spatial learning and memory including: (1)reacquisition of a working memory version of the radial arm maze 6-7 months post-TBI, (2) performance in water maze probe trials 8 months post-TBI, and (3) repeated acquisition of the Morris water maze 8 and 11 months post-TBI. Frontal TBI rats exhibited a different pattern of deficits, with the most robust deficits in tests of attention/orientation such as: (1) the delayed nonmatching to position task (even with no delays) 1-11 weeks post-TBI, (2) the repeated acquisition version of the water maze--especially on the first "information" trial 8 months post-TBI, (3) a test of sensorimotor neglect or inattention 8.5 months post-TBI, and (4) a DRL20 test of timing and/or sustained attention 11 months after surgery. These results suggest that long-term behavioral deficits can be detected in rodent models of TBI, that cognitive deficits seem to be more robust than sensorimotor deficits, and that different TBI impact sites produce dissociable patterns of cognitive deficits in rats.