Journal of neurotrauma
-
Journal of neurotrauma · Dec 1997
Effects of six weeks of chronic ethanol administration on lactic acid accumulation and high energy phosphate levels after experimental brain injury in rats.
The effects of 6 weeks of chronic ethanol administration on the lateral fluid percussion (FP) brain injury-induced regional accumulation of lactate and on the levels of total high-energy phosphates were examined in rats. In both the chronic ethanol diet (ethanol diet) and pair-fed isocaloric sucrose control diet (control diet) groups, tissue concentrations of lactate were elevated in the cortices and hippocampi of both the ipsilateral and contralateral hemispheres at 5 min after brain injury. In both diet groups, concentrations of lactate were elevated only in the injured left cortex and the ipsilateral hippocampus at 20 min after FP brain injury. ⋯ No significant differences were found in the levels of total high-energy phosphates in the cortices and hippocampi of the sham and brain-injured animals between the ethanol and control diet groups at 5 min and 20 min after injury. Histologic studies revealed a similar extent of damage in the cortex and in the CA3 region of the ipsilateral hippocampus in both diet groups at 14 days after lateral FP brain injury. These findings suggest that 6 weeks of chronic ethanol administration does not alter brain injury-induced accumulation of lactate, levels of total high energy phosphates, and extent of morphological damage.
-
Journal of neurotrauma · Dec 1997
Effect of tetrahydroaminoacridine, a cholinesterase inhibitor, on cognitive performance following experimental brain injury.
An emerging literature exists in support of deficits in cholinergic neurotransmission days to weeks following experimental traumatic brain injury (TBI). In addition, novel cholinomimetic therapeutics have been demonstrated to improve cognitive outcome following TBI in rats. We examined the effects of repeated postinjury administration of a cholinesterase inhibitor, tetrahydroaminoacridine (THA), on cognitive performance following experimental TBI. ⋯ Analysis of maze latencies over days indicated that chronic administration of THA produced a dose-related impairment in MWM performance in both the injured and sham groups, with the 9.0 mg/kg dose producing the largest deficit. The 1.0 and 3.0 mg/kg doses of THA impaired MWM performance without affecting swimming speeds. Thus, the results of this investigation do not support the use of THA as a cholinomimetic therapeutic for the treatment of cognitive deficits following TBI.
-
Journal of neurotrauma · Nov 1997
Time course of cerebral edema after traumatic brain injury in rats: effects of riluzole and mannitol.
Brain trauma is the main cause of morbidity and mortality in young adults. One delayed events that occurs after a head trauma and compromises the survival of patients is cerebral edema. The present study examined first the occurrence of cerebral edema after a traumatic brain injury (TBI) induced by moderate fluid percussion in rats. ⋯ Riluzole at 4 x 4 mg/kg significantly reduced edema measured at 48 h, in the ipsilateral hippocampus (p < 0.05), whereas at 4 x 8 mg/kg, the reduction was observed in the hippocampus (p < 0.01) and the injured cortex (p < 0.05). Our results demonstrate that (1) cerebral edema begins early after the injury and is resorbed over 1 week; (2) mannitol could attenuate cerebral edema; and (iii) riluzole in addition to its neuroprotective effects reduces the brain edema. Thus, riluzole could be useful in human TBI treatment.
-
Journal of neurotrauma · Nov 1997
Quantitative analysis of acute axonal pathology in experimental spinal cord contusion.
The major sensorimotor deficits that result from traumatic spinal cord injury (SCI) are due to loss of axons in ascending and descending pathways of the white matter (WM). Experimental treatments administered after a standardized SCI can reduce WM loss and long-term functional deficits. Thus, a significant proportion of WM loss occurs secondary to the mechanical injury and may be a target for therapeutic intervention. ⋯ We developed a semi-quantitative Axonal Injury Index (AII) as an overall measure of axonal pathology that was sensitive to the effects of injury severity at 4 h pi. The AII has greater statistical power than our individual measures of axonal pathology. Our results suggest that it may be possible to use the AII at 4 h pi to assess effects of potential therapeutic agents on acute axonal pathology after SCI.
-
Journal of neurotrauma · Oct 1997
ReviewIs high extracellular glutamate the key to excitotoxicity in traumatic brain injury?
Traumatic brain injury (TBI) increases extracellular levels of the excitatory amino acid glutamate and aspartate, and N-methyl-D aspartate (NMDA)-receptor antagonists protect against experimental TBI. These two findings have led to the prevalent hypothesis that excitatory amino acid efflux is a major contributor to the development of neuronal damage subsequent to traumatic injury. However, as with stroke, the hypothesis that high extracellular glutamate is the key to excitotoxicity in TBI conflicts with important data. ⋯ Finally, we introduce the notion that beneficial effects of glutamate receptor antagonists in experimental models of neurological disorders do not necessarily imply the occurrence of excitotoxic processes. Indeed, glutamate-receptor blockade may be protective by reducing the energy demand required to counterbalance Na+ influx associated with glutamatergic synaptic transmission. In other words, glutamate receptor antagonists (and blockers of voltage-gated Na+-channels) may help nervous tissue to cope with increased permeability of the cellular membrane to ions and reduced efficacy of Na+ extrusion, and thus prevent the decay of transmembrane ionic concentrations gradients.