Journal of neurotrauma
-
Journal of neurotrauma · Sep 1997
NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush.
Damage resulting from a partial acute lesion of white matter in the central nervous system (CNS) gradually spreads also to neurons that escaped the primary injury, resulting in their degeneration. Such spreading has been referred to as secondary degeneration. In order to demonstrate that this degeneration is indeed secondary to that caused by the acute insult, as well as to investigate the mechanism underlying the spread of damage and ways in which to protect neurons from such damage, we have proposed the use of partial lesion of the rodent optic nerve as a model. ⋯ A positive VEP response to light was obtained in 90% of the MK-801 treated animals and in only 50% of injured controls. The questions regarding whether the secondary degeneration of initially spared neurons starts in their cell bodies or in their axons, and consequently the identity of the primary site of their protection by MK-801, are discussed in relation to the absence of N-methyl-D-aspartate receptors on nerve fibers. The present findings may have implications for both acute and chronic injuries of the CNS.
-
Spinal cord injury (SCI) frequently results in dysesthesias that have remained refractory to clinical treatments despite a variety of interventions. The failure of therapeutic strategies to treat dysesthesias after SCI is due to the lack of attention given to mechanisms that elicit chronic pain following SCI. An overview of the literature with respect to the development of chronic pain in the SCI patient population will be given. ⋯ The data presented support the development of central sensitization of dorsal horn neurons after spinal cord hemisection. This provides a mechanism for the development of mechanical and thermal allodynia after SCI. Hypotheses that account for the development of the central pain state after SCI, as well as therapeutic interventions to ameliorate the pain state, are discussed.
-
Journal of neurotrauma · Aug 1997
Cholinergic modulation of cerebral cortical blood flow changes induced by trauma.
These experiments tested the role of cholinergic mechanisms in the changes of cerebral cortical blood flow (CBF) induced by brain trauma. CBF was measured with Iodo-14C-antipyrine autoradiography, in 128 cerebral cortex regions of both hemispheres, distributed in eight coronal slices. The effects of a 6.3-mm diameter craniotomy over the left motor-sensory cortex with no weight drop, and of trauma (drop weight of 20 g from 30 cm height on left motor-sensory cortex through a 6.3 mm circular craniotomy) on CBF were studied at 2 and 24 h after the interventions. ⋯ The cerebral cortex contralateral to the trauma showed significantly higher CBF 24 h after trauma when compared to intact controls or craniotomy that peaked at the area symmetrical to the center of trauma. This phenomenon was also enhanced by physostigmine and completely blocked by scopolamine. These results suggest a prominent role of cholinergic mechanisms in the vascular adjustments that accompany cerebral trauma.
-
Journal of neurotrauma · Aug 1997
ReviewAssessment of corticospinal function in spinal cord injury using transcranial motor cortex stimulation: a review.
Other than clinical examination, few methods exist for assessing the functional condition of descending long tracts of the spinal cord in humans. This review covers neurophysiological examination of the corticospinal system using transcranial electrical and magnetic motor cortex stimulation. The neurophysiological basis for the motor evoked potentials (MEPs) and the differences between the two methods are discussed followed by a review of their use in individuals with spinal cord injury (SCI). ⋯ The use of transcranial motor cortex stimulation to modify segmental reflexes and in combination with volitional attempts have also provided evidence of conduction across the lesion in paralyzed SCI subjects. However, MEPs can be absent in some SCI individuals who may be able to volitionally activate muscles below the level of the spinal cord lesion. Such findings are useful in elucidating the neural mechanisms underlying the performance of a volitional movement and may serve to guide and monitor the effects of future treatments for paralysis in SCI and other neurological disorders.
-
Journal of neurotrauma · Aug 1997
ReviewTransplant therapy: recovery of function after spinal cord injury.
Spinal cord injuries (SCI) result in devastating loss of function and altered sensation. Presently, victims of SCI have few remedies for the loss of motor function and the altered sensation often experienced subsequent to the injury. A goal in SCI research is to improve function in both acute and chronic injuries. ⋯ New recent work describing the in vitro propagation and characterization of human fetal spinal cord multipotential progenitor cells are also described in the context of a potential resource for transplantable cells. Additionally, data from transplantation experiments of human FSC cells into nonimmunosuppressed rat spinal cord are described, and the resultant improvements in behavioral outcome reported. Lastly, directions for future SCI research are proposed.