Journal of neurotrauma
-
Journal of neurotrauma · Feb 1997
Motor and cognitive functional deficits following diffuse traumatic brain injury in the immature rat.
To determine the motor and cognitive deficits following a diffuse severe traumatic brain injury (TBI) in immature Sprague Dawley rats (17 days), four groups of animals were injured at different severity levels using a new closed head weight drop model: (sham, severe injury [SI: 100 g/2 m], SH [SI + hypoxemia (30 min of an FiO2 of 8% posttrauma)], and ultra severe injury [US: 150 g/2 m]). Latency on beam balance, grip test performance, and maintenance of body position on an inclined board were measured daily after injury to assess vestibulomotor function. Cognitive function was assessed on days 11-22 using the Morris water maze (MWM). ⋯ US, however, produced significant cognitive dysfunction (vs. sham, SI, and SH), specifically, greater latencies to find the hidden platform through 22 days. Swim speeds were not significantly different between any of the injury groups and shams. These data indicate that (1) beam balance, inclined plane and MWM techniques are useful for assessing motor and cognitive function after TBI in immature rats; (2) SI produces motor but not cognitive deficits, which was not augmented by transient hypoxia; and (3) US created a marked but reversible motor deficit up to 10 days, and a sustained cognitive dysfunction for up to 22 days after TBI.
-
Journal of neurotrauma · Jan 1997
Metabolic quantification of lesion volume following experimental traumatic brain injury in the rat.
A reliable and rapid method for quantifying lesion volume following traumatic brain injury (TBI) has vast potential in brain injury research. Staining with 2, 3, 5-triphenyltetrazolium chloride (TTC) provides for demarcation of damaged or infarcted tissue from normal, viable cerebral tissue, in which a red formazan product is formed by reduction during cellular respiration of mitochondrial dehydrogenase enzymes. The present study evaluated the use of TTC staining to quantify the cortical lesion volume in rats undergoing fluid-percussion (FP) brain injury. ⋯ The mean (+/-SD) lesion volumes were 12.1 (+/-4.5) mm3 following mild injury, 33.8 (+/-8.6) mm3 following moderate injury, and 45.1 (+/-14.0) mm3 following severe injury. A significant difference was observed between all injury groups using a t test with Bonferroni correction (p < 0.05). These results suggest that the TTC staining technique is a useful, rapid, and reproducible method for quantification of lesion volume following lateral FP brain injury.
-
Journal of neurotrauma · Dec 1996
Regional generation of leukotriene C4 after experimental brain injury in anesthetized rats.
Regional concentrations of leukotriene C4 and extravasation of Evans blue were measured after lateral fluid-percussion brain injury in rats. Tissue levels of LTC4 were elevated in the injured cortex at 10 min, 30 min, and 1 h after injury; these levels returned to normal by 2 h after injury. Increases in the levels of LTC4 were also observed in the ipsilateral hippocampus after brain injury, and these elevations persisted for 2 h after injury. ⋯ A substantial extravasation of Evans blue was observed only in the ipsilateral cortex and hippocampus at 3 h and 6 h after brain injury. Although a temporal association between LTC4 and blood-brain barrier (BBB) breakdown is suggested by these data, no cause-and-effect relationship has been addressed in this study. However, it is possible that, as is true for cerebral ischemia, LTC4 may play a role as a mediator in the BBB breakdown associated with fluid-percussion brain injury in rats.
-
Journal of neurotrauma · Dec 1996
Riluzole, a novel neuroprotective agent, attenuates both neurologic motor and cognitive dysfunction following experimental brain injury in the rat.
Several potential mechanisms are involved in mediating the pathophysiology of traumatic brain injury (TBI), including inflammatory processes and excitotoxicity. In the present study, we evaluated the ability of the use-dependent sodium channel inhibitor Riluzole to attenuate cognitive and neurologic motor deficits and reduce regional cerebral edema and histologic cell damage following lateral fluid-percussion (FP) brain injury in rats (n = 109). In study 1, 58 anesthetized male Sprague-Dawley rats (350-400 g) were subjected to FP brain injury of moderate severity (2.3-2.5 atm). ⋯ In study 3, brain-injured animals were treated with Riluzole (8 mg/kg x 3 doses, n = 10) or vehicle (n = 10), and posttraumatic lesion volume was assessed at 48 h postinjury using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Treatment with Riluzole had no significant effect on posttraumatic lesion volume. The present study demonstrates that use-dependent sodium channel inhibitors, such as Riluzole, can attenuate both cognitive and neuromotor dysfunction associated with brain trauma.
-
Journal of neurotrauma · Nov 1996
Review Practice Guideline Comparative Study GuidelineRecommendations for intracranial pressure monitoring technology. Brain Trauma Foundation.