Journal of neurotrauma
-
General categories of experimental brain injury models are reviewed regarding their clinical significance, and two new models are presented that use different methodology to produce injury. This report describes and characterizes the pathophysiologic changes produced by a novel fluid percussion (FP) method and a controlled cortical impact (CI) technique, both developed at the General Motors Research Laboratories (GMRL). The new models are compared to prior experimental brain injury techniques in relation to ongoing physical and analytical modeling used in automotive safety research by GMRL. ⋯ These controlled variables enable the amount of deformation and the change in deformation over time to be accurately determined. In addition, the CI model produces graded, reproducible cortical contusion, prolonged functional coma, and extensive axonal injury, unlike the FP technique. The quantifiable nature of the single mechanical input used to produce the injury allows correlations to be made between the amount of deformation and the resultant pathology and functional changes.(ABSTRACT TRUNCATED AT 400 WORDS)
-
Journal of neurotrauma · Jan 1988
Modeling of therapeutic dialysis of cerebrospinal fluid by epidural cooling in spinal cord injuries.
Paraplegias of traumatic origin may be classified as primary or secondary. Secondary traumatic paraplegia (STP) is believed to result from an autodestructive process. Different authors have published results supporting or contradicting the therapeutic effects of durotomy alone or associated with exposed spinal cord and perfusion with a saline solution at normal or cold temperatures. ⋯ The size of these Bénard cells was estimated. The range of probe temperatures at which convective flow is generated was considered, as well as the relative benefits of hypothermia versus flow. Results of more rigorous analysis are discussed.
-
Journal of neurotrauma · Jan 1988
Traumatic brain injury in the rat: effects on lipid metabolism, tissue magnesium, and water content.
Tissue levels of free fatty acids (FFA), total phospholipid, cholesterol, thromboxane B2, water, Na+, K+, and Mg2+ were measured in rat brain after lateral fluid-percussion brain injury of moderate severity (2.0-2.2 atm). Brains of injured animals and sham-operated controls were frozen in situ with liquid N2 at 10 min, 4 h, and 24 h postinjury and removed. The left parietal cortex, which has been shown previously histologically to be the site of maximal injury, was dissected for analysis. ⋯ Small decreases in tissue K+ occurred at 4 h; tissue Na+ levels were found to be slightly increased only at 24 h. These results are consistent with the hypothesis that changes in lipid metabolism and Mg2+ content of brain after injury may play a role in the pathophysiology of irreversible, posttraumatic tissue damage. In contrast, significant edema formation does not occur in this model and does not, therefore, appear to be a factor in the injury process.
-
Journal of neurotrauma · Jan 1988
Spinal cord contusion in the rat: somatosensory evoked potentials as a function of graded injury.
A weight-drop technique was used to produce mild, moderate, or severe spinal cord contusive injury in rats. At 4 weeks after injury, somatosensory evoked potentials (SEPs) were recorded with silver ball electrodes placed over the somatosensory cortex of anesthetized rats to measure the response to sciatic nerve stimulation. Both SEP area and amplitude were measured and were highly correlated with each other. ⋯ Measures of residual function consisted of a motor score, inclined plane test, and a combined behavioral score based on several neurologic functions. No correlation between latency of the SEP with degrees of contusive injury was observed. The data indicate that the SEP can be used as one criterion in the assessment of the severity of a lesion in a rat model of a graded spinal cord injury.
-
Journal of neurotrauma · Jan 1988
Controlled cortical impact: a new experimental brain injury model.
A new experimental model of mechanical brain injury was produced in the laboratory ferret (Mustela putorius furo) using a stroke-constrained pneumatic impactor. Cortical impacts were made on vertex to the intact dura mater overlying the cerebral cortex with contact velocities ranging from 2.0 to 4.0 m/sec and with deformations of 2.0 to 5.0 mm. The dwell time of the impact and the stability of the skull during impact were verified with high speed (1000 to 3000 frames/sec) cineradiography. ⋯ The spectrum of anatomic injury and systemic physiologic responses closely resembled aspects of closed head injury seen clinically. This procedure complements and improves on existing techniques by allowing independent control of contact velocity and level of deformation of the brain to facilitate biomechanical and analytic modeling of brain trauma. Graded cortical contusions and subcortical injury are produced by precisely controlled brain deformations, thereby allowing questions to be addressed regarding the influence of contact velocity and level of deformation on the anatomic and functional severity of brain injury.