Journal of autoimmunity
-
Journal of autoimmunity · Jul 2021
Review Comparative StudyMechanisms of Immunothrombosis in Vaccine-Induced Thrombotic Thrombocytopenia (VITT) Compared to Natural SARS-CoV-2 Infection.
Herein, we consider venous immunothrombotic mechanisms in SARS-CoV-2 infection and anti-SARS-CoV-2 DNA vaccination. Primary SARS-CoV-2 infection with systemic viral RNA release (RNAaemia) contributes to innate immune coagulation cascade activation, with both pulmonary and systemic immunothrombosis - including venous territory strokes. However, anti-SARS-CoV-2 adenoviral-vectored-DNA vaccines -initially shown for the ChAdOx1 vaccine-may rarely exhibit autoimmunity with autoantibodies to Platelet Factor-4 (PF4) that is termed Vaccine-Induced Thrombotic Thrombocytopenia (VITT), an entity pathophysiologically similar to Heparin-Induced Thrombocytopenia (HIT). ⋯ The VITT cavernous sinus cerebral and intestinal venous territory immunothrombosis proclivity may pertain to venous drainage of shared microbiotal-rich areas of the nose and in intestines that initiates local endovascular venous immunity by PF4/microbiotal engagement with PF4 autoantibody driven immunothrombosis reminiscent of HIT. According to the proposed model, any adenovirus-vectored-DNA vaccine could drive autoimmune VITT in susceptible individuals and alternative mechanism based on molecular mimicry, vaccine protein contaminants, adenovirus vector proteins, EDTA buffers or immunity against the viral spike protein are secondary factors. Hence, electrochemical DNA-PF4 interactions and PF4-heparin interactions, but at different locations, represent the common denominator in HIT and VITT related autoimmune-mediated thrombosis.
-
Journal of autoimmunity · Jul 2021
ReviewPerspectives on vaccine induced thrombotic thrombocytopenia.
As the novel SARS-CoV-2 continues to infect numerous individuals worldwide, one of the leading approaches in dealing with the global health crisis is vaccination against the COVID-19. Due to recent reports, vaccination with ChAdOx1 nCov-19 (developed by Oxford and AstraZeneca) may result in a vaccine-induced catastrophic thrombotic thrombocytopenia disorder. Thus, as of March 16 of 2021, vaccination programs in 18 countries had been suspended until further examination, including Sweden, Germany and France. ⋯ As the ChAdOx1 nCov-19 vaccination leads to the synthesis of specific SARS-CoV-2-proteins, they may trigger a production of PF4 autoantibody though molecular mimicry phenomena, while vaccination compounds lead to a rigorous bystander activation of immune cells. If existing, removing such homological sequences from the vaccine may eliminate this phenomenon. In contrast, it needs to be emphasized that the ChAdOx1 nCoV-19 vaccine was found to be safe and efficacious against symptomatic COVID-19 in randomized controlled trials, which included 23,848 participants from the UK, Brazil and South Africa.
-
Journal of autoimmunity · Jul 2020
ReviewCan we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)?
The emergent outbreak of coronavirus disease 2019 (COVID-19) has caused a global pandemic. Acute respiratory distress syndrome (ARDS) and multiorgan dysfunction are among the leading causes of death in critically ill patients with COVID-19. The elevated inflammatory cytokines suggest that a cytokine storm, also known as cytokine release syndrome (CRS), may play a major role in the pathology of COVID-19. ⋯ There is an urgent need for novel therapies to treat COVID-19-induced CRS. Here, we discuss the pathogenesis of severe acute respiratory syndrome (SARS)-induced CRS, compare the CRS in COVID-19 with that in SARS and Middle East respiratory syndrome (MERS), and summarize the existing therapies for CRS. We propose to utilize interleukin-6 (IL-6) blockade to manage COVID-19-induced CRS and discuss several factors that should be taken into consideration for its clinical application.
-
Journal of autoimmunity · Jul 2020
ReviewThe anti-viral facet of anti-rheumatic drugs: Lessons from COVID-19.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed the world at a pandemic risk. Coronavirus-19 disease (COVID-19) is an infectious disease caused by SARS-CoV-2, which causes pneumonia, requires intensive care unit hospitalization in about 10% of cases and can lead to a fatal outcome. Several efforts are currently made to find a treatment for COVID-19 patients. ⋯ This provided rationale for the use of anti-rheumatic drugs as potential treatments for this severe viral infection. Other agents, such as hydroxychloroquine and chloroquine might have a direct anti-viral effect. The anti-viral aspect of immunosuppressants towards a variety of viruses has been known since long time and it is herein discussed in the view of searching for a potential treatment for SARS-CoV-2 infection.
-
Journal of autoimmunity · May 2020
Review Historical ArticleThe deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China.
The 2019-nCoV is officially called SARS-CoV-2 and the disease is named COVID-19. This viral epidemic in China has led to the deaths of over 1800 people, mostly elderly or those with an underlying chronic disease or immunosuppressed state. This is the third serious Coronavirus outbreak in less than 20 years, following SARS in 2002-2003 and MERS in 2012. ⋯ However, it is clear that finding an effective antiviral and developing a vaccine are still significant challenges. The costs of the epidemic are not limited to medical aspects, as the virus has led to significant sociological, psychological and economic effects globally. Unfortunately, emergence of SARS-CoV-2 has led to numerous reports of Asians being subjected to racist behavior and hate crimes across the world.