Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
-
Neurologic determination of death or brain death is primarily a clinical diagnosis. This must respect all guarantees required by law and should be determined early to avoid unnecessary treatment and allow organ harvesting for transplantation. Ancillary testing is used in situations in which clinical assessment is impossible or confounded by other factors. Our purpose is to determine the utility of dynamic computed tomographic angiography (dCTA) as an ancillary test for diagnosis of brain death. ⋯ In patients with suspected brain death, dCTA reliably demonstrated the lack of cerebral blood flow, with extracranial circulation as an internal reference. Our initial results suggest that inversion of time of contrast appearance between internal carotid artery and external carotid artery branches at the skull base could predict a lack of distal intracranial flow.
-
The organ injury scale grading system proposed by the American Association for the Surgery of Trauma provides guidelines for operative versus nonoperative management in solid organ injuries; however, major shortcomings of the American Association for the Surgery of Trauma injury scale may become apparent with low-grade injuries, in which conservative management may fail. Nonoperative management of common intra-abdominal solid organ injuries relies increasingly on computed tomographic findings and other clinical factors, including patient age, presence of concurrent injuries, and serial clinical assessments. Familiarity with characteristic imaging features is essential for the prompt diagnosis and appropriate treatment of blunt abdominal trauma. In this pictorial essay, the spectrum of the American Association for the Surgery of Trauma organ injury scale grading system is illustrated, and a multidisciplinary management algorithm for common intra-abdominal solid organ injuries is proposed.
-
The purpose of this study was to determine whether low-kilovoltage (80 or 100 kV) computed tomography (CT)-guided interventions performed in a community-based hospital are feasible and to compare radiation exposure incurred with conventional 120 kV potential. ⋯ A low-dose radiation technique by using 80 or 100 kV results in a high technical success rate for pelvic, chest, and abdomen CT-guided interventional procedures, although dramatically decreasing radiation exposure. There was no significant difference in effective diameter (patient size) between the conventional and the low-dose groups, which would suggest that dose reduction was indeed a result of kVp change and not patient size.
-
Superior vena cava syndrome results from the obstruction of blood flow through the superior vena cava and is most often due to thoracic malignancy. However, benign etiologies are on the rise secondary to more frequent use of intravascular devices such as central venous catheters and pacemakers. Although rarely a medical emergency, the symptoms can be alarming, particularly to the patient. ⋯ This review will provide the reader with an insight into the etiology, pathophysiology, and various management principles of superior vena cava syndrome. The focus will be on understanding the techniques used during various endovascular interventions, including angioplasty, stenting, and pharmacomechanical thrombolysis. Discussion will also be centred on possible complications and current evidence as well as controversies regarding these approaches.
-
Despite the positive outcome of the recent randomized trial of computed tomography (CT) screening for lung cancer, substantial implementation challenges remain, including the clear reporting of relative risk and suggested workup of screen-detected nodules. Based on current literature, we propose a 6-level Lung-Reporting and Data System (LU-RADS) that classifies screening CTs by the nodule with the highest malignancy risk. As the LU-RADS level increases, the risk of malignancy increases. ⋯ Category 4 scans are suspicious and are subdivided into 4A, low risk of malignancy; 4B, likely low-grade adenocarcinoma; and 4C, likely malignant. The 4B and 4C nodules have a high likelihood of neoplasm simply based on screening CT features, even if positron emission tomography, needle biopsy, and/or bronchoscopy are negative. Category 5 nodules demonstrate frankly malignant behavior on screening CT, and category 6 scans contain tissue-proven malignancies.