Molecular neurobiology
-
Molecular neurobiology · Jun 2014
(-)-Epigallocatechin-3-gallate ameliorates learning and memory deficits by adjusting the balance of TrkA/p75NTR signaling in APP/PS1 transgenic mice.
Alzheimer's disease (AD) is pathologically characterized by deposition of β-amyloid (Aβ) peptides, which closely correlates with the balance of nerve growth factor (NGF)-related TrkA/p75NTR signaling. (-)-Epigallocatechin-3-gallate (EGCG) is used for prevention and treatment of many neurodegenerative diseases, including AD. However, whether the neuroprotective effects of EGCG treatment were via modulating the balance of TrkA/p75NTR signaling was still unknown. ⋯ Interestingly, the EGCG treatment enhanced the relative expression level of NGF by increasing the NGF/proNGF ratio in the APP/PS1 mice. Moreover, after EGCG treatment, TrkA signaling was activated by increasing the phosphorylation of TrkA following the increased phosphorylation of c-Raf, ERK1/2, and cAMP response element-binding protein (CREB), simultaneously the p75NTR signaling was significantly inhibited by decreasing the p75ICD expression, JNK2 phosphorylation, and cleaved-caspase 3 expression, so that the Aβ deposits and neuronal apoptosis in the hippocampus were inhibited.