Molecular neurobiology
-
Molecular neurobiology · Apr 2015
ReviewSpecific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide.
The novel antiepileptic drug lacosamide (LCM; SPM927, Vimpat®) has been heralded as having a dual-mode of action through interactions with both the voltage-gated sodium channel and the neurite outgrowth-promoting collapsin response mediator protein 2 (CRMP2). Lacosamide's ability to dampen neuronal excitability through the voltage-gated sodium channel likely underlies its efficacy in attenuating the symptoms of epilepsy (i.e., seizures). While the role of CRMP2 in epilepsy has not been well studied, given the proposed involvement of circuit reorganization in epileptogenesis, the ability of lacosamide to alter CRMP2 function may prove disease modifying. ⋯ In this review, we address the contradictory reports concerning the binding of lacosamide to CRMP2 as well as the ability of lacosamide to directly impact CRMP2 function. Additionally, we address similarly the contradicting reports regarding the potential disease-modifying effect of lacosamide on the development and progression of epilepsy. As the vast majority of antiepileptic drugs influences only the symptoms of epilepsy, the ability to hinder disease progression would be a major breakthrough in efforts to cure or prevent this debilitating syndrome.
-
Molecular neurobiology · Apr 2015
Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant- and propsychotic-like behaviors following acute and repeated ketamine administration.
Accumulating evidence has demonstrated that single subanesthetic dose of ketamine exerts rapid, robust, and lasting antidepressant-like effects. Nevertheless, repeated subanesthetic doses of ketamine produce psychosis-like effects with dysfunction of parvalbumin (PV) interneurons. We hypothesized that PV interneurons play an important role in the antidepressant-like actions of ketamine, and different changes in PV interneurons occur with the antidepressant-like and propsychotic-like effects of ketamine. ⋯ Repeated administration of 30 mg/kg ketamine elicited stereotyped behaviors and hyperactivity actions as well as a longer duration of PV and GAD67 loss, higher brain glutamate levels, and lower brain GABA levels than acute single dose of ketamine. Our results reveal that the loss of phenotype of PV interneurons in the prefrontal cortex contributes to the antidepressant-like actions and is also involved in the propsychotic-like behaviors following acute and repeated ketamine administration, which may be partially mediated by the disinhibition of glutamate signaling. The different degrees and durations of the actions on PV interneurons produced by the two regimens of ketamine may partly underline the behavioral variance between the antidepressant- and propsychotic-like effects.