Molecular neurobiology
-
Molecular neurobiology · Apr 2019
Cerebrospinal Fluid Total Prion Protein in the Spectrum of Prion Diseases.
Cerebrospinal fluid (CSF) total prion protein (t-PrP) is decreased in sporadic Creutzfeldt-Jakob disease (sCJD). However, data on the comparative signatures of t-PrP across the spectrum of prion diseases, longitudinal changes during disease progression, and levels in pre-clinical cases are scarce. T-PrP was quantified in neurological diseases (ND, n = 147) and in prion diseases from different aetiologies including sporadic (sCJD, n = 193), iatrogenic (iCJD, n = 12) and genetic (n = 209) forms. ⋯ The presence of low CSF t-PrP is common to all types of prion diseases regardless of their aetiology albeit with mutation-specific exceptions in a minority of genetic cases. In some genetic prion disease, decreased levels are already detected at pre-clinical stages and diminish in parallel with disease progression. Our data indicate that CSF t-PrP concentrations may have a role as a pre-clinical or early symptomatic diagnostic biomarker in prion diseases as well as in the evaluation of therapeutic interventions.
-
Molecular neurobiology · Apr 2019
Pain-Relieving Effects of mTOR Inhibitor in the Anterior Cingulate Cortex of Neuropathic Rats.
The anterior cingulate cortex (ACC) is a well-known brain area that is associated with pain perception. Previous studies reported that the ACC has a specific role in the emotional processing of pain. Chronic pain is characterized by long-term potentiation that is induced in pain pathways and contributes to hyperalgesia caused by peripheral nerve injury. ⋯ A behavioral test was performed to evaluate mechanical allodynia, and optical imaging was conducted to observe the neuronal responses of the ACC to peripheral stimulation. Inhibition of mTOR by rapamycin reduced mechanical allodynia, down-regulated mTOR signaling in the ACC, and diminished the expressions of synaptic proteins which are involved in excitatory signaling, thereby reducing neuropathic pain-induced synaptic plasticity. These results suggest that inhibiting mTOR activity by rapamycin in the ACC could serve as a new strategy for treating or managing neuropathic pain before it develops into chronic pain.
-
Molecular neurobiology · Apr 2019
Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats.
S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. ⋯ Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.