Molecular neurobiology
-
Molecular neurobiology · Oct 2020
ReviewRole of Circular Ribonucleic Acids in the Treatment of Traumatic Brain and Spinal Cord Injury.
The causal and pathogenetic factors linked to traumatic brain injury (TBI) and spinal cord injury (SCI) are complex. This complexity is a contributive factor in the minimal improvement outcomes of injured individuals. Several studies have demonstrated the potentiality of stem cells in facilitating neuronal growth and improve outcome in various neurological conditions, including TBI and SCI. ⋯ Our analyses showed the role of circular RNAs in brain/spinal cord injuries to be multifaceted, as they can modulate several signaling mechanisms while also acting as sponges for microRNAs and binding to their sites. Additionally, circular RNAs can activate several biological, molecular, and cellular activities in the wake of brain/spinal cord injuries. Thus, both non-pharmacological and pharmacological interventions centered on the regulation of circular RNAs could be promising for TBI and SCI.
-
Molecular neurobiology · Oct 2020
Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain.
Anterior cingulate cortex (ACC) is a critical brain center for chronic pain processing. Dopamine signaling in the brain has been demonstrated to contribute to descending pain modulation. However, the role of ACC dopamine receptors in chronic neuropathic pain remains unclear. ⋯ We observed that dopamine receptors D1 and D2 in the ACC are primarily expressed in excitatory neurons and that the D2 receptor is differentially regulated in the early and late phases of trigeminal neuropathic pain. Optogenetic activation of D1-expressing neurons in the ACC markedly exacerbates CCI-ION-induced trigeminal neuropathic pain in both early and late phases, but optogenetic activation of D2-expressing neurons in the ACC robustly ameliorates such pain in its late phase. Our results suggest that dopamine receptors D1 and D2 in the ACC play different roles in the modulation of trigeminal neuropathic pain.