Molecular neurobiology
-
Molecular neurobiology · Dec 2007
ReviewMechanotransduction: touch and feel at the molecular level as modeled in Caenorhabditis elegans.
The survival of an organism depends on its ability to respond to its environment through its senses. The sense of touch is one of the most vital; still, it is the least understood. In the process of touch sensation, a mechanical stimulus is converted into electrical signals. ⋯ I also report here electrophysiological and behavioral studies employing knockout mice that have recently shown that mammalian homologues of MEC-4, MEC-10, and accessory subunits are needed for normal mechanosensitivity in mouse, suggesting a conserved function for this channel family across species. The C. elegans genome encodes 28 DEG/ENaC channels: I discuss here the global role of DEG/ENaCs in mechanosensation, reporting findings on the role of other three nematode DEG/ENaCs (UNC-8, DEL-1, and UNC-105) in mechanosensitive and stretch-sensitive behaviors. Finally, this review will discuss findings in which members of another family of ion channels, the Transient Receptor Potential channels family, have been implicated in mechanosensitive behaviors in organisms ranging from C. elegans to mammals.
-
Molecular neurobiology · Jun 2006
Changes in the expression of G protein-coupled receptor kinases and beta-arrestins in mouse brain during cannabinoid tolerance: a role for RAS-ERK cascade.
The focus of our study was to determine the role of G protein-coupled receptor kinases (GRKs) and beta-arrestins in agonist-induced CB1 receptor modulation during cannabinoid tolerance and their dependence from the extracellular signal-regulated kinase (ERK) cascade. In wild-type mice, chronic Delta9-tetrahydrocannabinol (THC) exposure significantly activated specific GRK and beta- arrestin subunits in all the considered brain areas (striatum, cerebellum, hippocampus, and prefrontal cortex), suggesting their involvement in the adaptive processes underlying CB1 receptor downregulation and desensitization. ⋯ As a whole, our data suggest that in the striatum and cerebellum, THC-induced ERK activation could represent a key signaling event to initiate homologous desensitization of CB1 receptor, accounting for the development of tolerance to THC-induced hypolocomotion. In the prefrontal cortex and hippocampus, THC-induced alteration in GRKs and beta-arrestins primarily depends on other kinases, whereas ERK activation could be part of the molecular adaptations that underlie the complex behavioral phenotype that defines the addicted state.
-
Molecular neurobiology · Apr 2003
ReviewPhysiological and anatomical link between Parkinson-like disease and REM sleep behavior disorder.
Parkinson's disease (PD) is a progressive neurodegenerative disease that is caused by a loss of neurons in the ventral midbrain. Parkinsonian patients often experience insomnia, parasomnias, and daytime somnolence. REM sleep behavior disorder (RBD) is characterized by vigorous movements during REM sleep, and may also be caused by neuronal degeneration in the central nervous system (CNS); however, the site of degeneration remains unclear. ⋯ Conversely, it is also true that certain patients diagnosed with Parkinsonism subsequently develop RBD. Postmortem examination reveals that Lewy bodies, Lewy neurites, and alpha-synuclein are found in brainstem nuclei in both Parkinsonism and RBD patients. In this article, we will discuss evidence that Parkinsonism and RBD are physiologically and anatomically linked, based on our animal experiments and other studies on human patients.
-
Molecular neurobiology · Aug 2002
ReviewContribution of the spared primary afferent neurons to the pathomechanisms of neuropathic pain.
Neuropathic pain is caused by nervous-system lesions. Early studies on the pathomechanisms of this abnormal pain state have focused on the directly injured fibers and neurons. ⋯ Electrophysiological changes and behavioral data also favor the contribution of the spared neurons. These attractive targets of study will give us new approaches for understanding the abnormal pain.
-
Molecular neurobiology · Jan 1992
ReviewDynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis.
Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain alpha-actinin, an anchorage protein that mediates F-actin association with these vesicles. ⋯ Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-beta-hydroxylase (anti-D beta H) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.