Molecular neurobiology
-
Molecular neurobiology · Oct 2019
Wnt Signaling Alterations in the Human Spinal Cord of Amyotrophic Lateral Sclerosis Cases: Spotlight on Fz2 and Wnt5a.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure, and elucidation of the mechanisms mediating neuronal death in this neuropathology is crucial to develop effective treatments. It has recently been demonstrated in animal models that the Wnt family of proteins is involved in this neuropathology, although its potential involvement in case of humans is almost unknown. We analyzed the expression of Wnt signaling components in healthy and ALS human spinal cords by quantitative RT-PCR, and we found that most Wnt ligands, modulators, receptors, and co-receptors were expressed in healthy controls. ⋯ However, we detected an increase in the amount of Fz2+ astrocytes in the borderline between gray and white matter at the ventral horn in ALS samples. Finally, Wnt5a expression was observed in neurons and astrocytes in both control and ALS samples, although Wnt5a immunolabeling in astroglial cells was significantly increased in ALS spinal cords in the same region where changes in Fz2 were observed. Altogether, these observations strongly suggest that the Wnt family of proteins, and more specifically Fz2 and Wnt5a, might be involved in human ALS pathology.
-
Molecular neurobiology · Aug 2019
ReviewThe Retina as a Window or Mirror of the Brain Changes Detected in Alzheimer's Disease: Critical Aspects to Unravel.
Alzheimer's disease is the most frequent cause of dementia worldwide, representing a global health challenge, with a massive impact on the quality of life of Alzheimer's disease patients and their relatives. The diagnosis of Alzheimer's disease constitutes a real challenge, because the symptoms manifest years after the first degenerative changes occurring in the brain and the diagnosis is based on invasive and/or expensive techniques. Therefore, there is an urgent need to identify new reliable biomarkers to detect Alzheimer's disease at an early stage. ⋯ Unlike previous reviews on this subject, which are mainly focused on brain changes, we organized this review by comprehensively summarizing findings related with structural, functional, cellular, and molecular parameters in the retina reported in both Alzheimer's disease patients and animal models. Moreover, we separated the studies that assessed only the retina, and those that assessed both the retina and brain, which are few but allow establishing correlations between the retina and brain. This review also highlights some inconsistent results in the literature as well as relevant missing gaps in this field.
-
Molecular neurobiology · Aug 2019
ReviewAnimal Models of Traumatic Brain Injury and Assessment of Injury Severity.
Traumatic brain injury (TBI) contributes a major cause of death, disability, and mental health disorders. Most TBI patients suffer long-term post-traumatic stress disorder, cognitive dysfunction, and disability. The underlying molecular and cellular mechanisms of such neuropathology progression in TBI remain elusive. ⋯ Focal injury, a localized injury, is represented by animal models of controlled cortical impact, penetrating ballistic-like brain injury, and Feeney or Shohami weight drop injury. A global diffuse injury is best represented by shock tube model of primary blast injury, and Marmarou or Maryland weight drop model. A mixed injury consists of focal and diffuse injury which reproduces the concussive clinical syndrome, and it is best studied in animal model of lateral fluid percussion injury.
-
Molecular neurobiology · May 2019
Targeting Axon Integrity to Prevent Chemotherapy-Induced Peripheral Neuropathy.
Chemotherapy-induced peripheral neuropathy (CIPN) is an irreversible off-target adverse effect of many chemotherapeutic agents such as paclitaxel, yet its mechanism is poorly understood and no preventative measure is available. CIPN is characterized by peripheral nerve damages resulting in permanent sensory function deficits. Our recent unbiased genome-wide analysis revealed that heat shock protein (Hsp) 27 is part of a transcriptional network induced by axonal injury and highly enriched for genes involved in adaptive neuronal responses, particularly axonal regeneration. ⋯ Strikingly, hHsp27 protected against paclitaxel-induced neurotoxicity in vivo including degeneration of afferent nerve fibers, demyelination, mitochondrial swelling, apoptosis, and restored sensory nerve action potential. Finally, we delineated signaling cascades that link CIPN development to caspase 3 and RhoA/cofilin activation in sensory neurons and peripheral nerves. hHsp27 exerted anti-apoptotic effect and maintained axon integrity by restoring caspase 3 and RhoA expression to basal levels. Taken together, our data suggest that by preventing axonal degeneration might prove beneficial as anti-CIPN drugs, which represents an emerging research area for therapeutic development.
-
Molecular neurobiology · Apr 2019
Cerebrospinal Fluid Total Prion Protein in the Spectrum of Prion Diseases.
Cerebrospinal fluid (CSF) total prion protein (t-PrP) is decreased in sporadic Creutzfeldt-Jakob disease (sCJD). However, data on the comparative signatures of t-PrP across the spectrum of prion diseases, longitudinal changes during disease progression, and levels in pre-clinical cases are scarce. T-PrP was quantified in neurological diseases (ND, n = 147) and in prion diseases from different aetiologies including sporadic (sCJD, n = 193), iatrogenic (iCJD, n = 12) and genetic (n = 209) forms. ⋯ The presence of low CSF t-PrP is common to all types of prion diseases regardless of their aetiology albeit with mutation-specific exceptions in a minority of genetic cases. In some genetic prion disease, decreased levels are already detected at pre-clinical stages and diminish in parallel with disease progression. Our data indicate that CSF t-PrP concentrations may have a role as a pre-clinical or early symptomatic diagnostic biomarker in prion diseases as well as in the evaluation of therapeutic interventions.