Brain topography
-
Case Reports
Responses to median and tibial nerve stimulation in patients with chronic neuropathic pain.
Somatosensory evoked magnetic fields and electrical potentials were measured in eight patients with unilateral neuropathic pain. After median nerve stimulation on the painful side, the amplitudes of the evoked responses were enhanced 2 to 3 times at a latency of about 100 ms compared to the responses of the contralateral, unaffected side. After posterior tibial nerve stimulation an enhancement was found at latencies around 110 ms and 150 ms. ⋯ Three (of the eight) patients underwent spinal cord stimulation (SCS) for their pain. The enhancement of the evoked responses to stimulation of the painful side decreased after spinal cord stimulation. After a long period of spinal cord stimulation only (e.g., a year) during which the patient reported to be pain free, these "abnormal" responses were no longer observed.
-
Spontaneous alpha activity clearly present in relaxed wakefulness with closed eyes, drowsiness period at sleep onset, and REM sleep was studied with spatial segmentation methods in order to determine if the brain activation state would be modulating the alpha spatial microstates composition and duration. These methods of spatial segmentation show some advantages: i) they extract topographic descriptors independent of the chosen reference (reference-free methods), and ii) they achieve spatial data reduction that are more data-driven than dipole source analysis. The results obtained with this study revealed that alpha activity presented a different spatio-temporal pattern of brain electric fields in each arousal state used in this study. ⋯ If we assume that longer segments of stable brain activity imply a lesser amount of different information to process (as reflected by a higher stability of the brain generator), whereas shorter segments imply a higher number of brain microstates caused by more different steps of information processing, it is possible that the alpha activity appearing in the sleep onset period could be indexing the hypnagogic imagery self-generated by the sleeping brain, and a phasic event in the case of REM sleep. Probably, REM-alpha bursts are associated with a brain microstate change (such as sleep spindles), as demonstrated by its phasic intrusion in a desynchronized background of brain activity. On the other hand, alpha rhythm could be the "baseline" of brain activity when the sensory inputs are minimum and the state is relaxed wakefulness.