Brain topography
-
Comparative Study
Comparison of Brain Networks During Interictal Oscillations and Spikes on Magnetoencephalography and Intracerebral EEG.
Electromagnetic source localization in electroencephalography (EEG) and magnetoencephalography (MEG) allows finding the generators of transient interictal epileptiform discharges ('interictal spikes'). In intracerebral EEG (iEEG), oscillatory activity (above 30 Hz) has also been shown to be a marker of neuronal dysfunction. Still, the difference between networks involved in transient and oscillatory activities remains largely unknown. ⋯ MEG). A subset of SOZ regions were detected by one type of discharges but not the other (25 % for spikes and 8 % for oscillations). Our study suggests that spike and oscillatory activities involve overlapping but distinct networks, and are complementary for presurgical mapping.
-
Simultaneous bilateral onset and bi-synchrony epileptiform discharges in electroencephalogram (EEG) remain hallmarks for generalized seizures. However, the possibility of an epileptogenic focus triggering rapidly generalized epileptiform discharges has been documented in several studies. Previously, a new multi-stage surgical procedure using bilateral intracranial EEG (iEEG) prior to and post complete corpus callosotomy (CC) was developed to uncover seizure focus in non-lateralizing focal epilepsy. ⋯ The results indicated that despite diffuse epileptiform discharges, focal features can still be observed in apparent generalized seizures through brain connectivity analysis. The seizure onset localization/lateralization from connectivity analysis demonstrated a good agreement with the bilateral iEEG findings post complete CC and final surgical outcomes. Our study supports the role of focal epileptic networks in generalized seizures.
-
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. ⋯ However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.