Somatosensory & motor research
-
Comparative Study
Pain additivity, diffuse noxious inhibitory controls, and attention: a functional measurement analysis.
This study utilized the methodology of Functional Measurement theory to investigate the additivity of painful and non-painful thermally induced experiences at one body site with those produced by brief noxious and innocuous electrical stimuli at another. Forty healthy young subjects were tested, using a Peltier thermode to induce tonic pain and an electrocutaneous stimulator for presenting phasic pain, under conditions of either full attention or visual/cognitive distraction (counting numerous light signals) in order to evaluate whether the summed effects are attributable to refocused attention. Six levels of intensity were combined in a factorial design for both tonic and phasic pain. ⋯ Distraction had a very small effect, suggesting that the "pain inhibits pain" phenomenon attributable to diffuse noxious inhibitory controls (DNIC) is not due to attentional processes. Our data also relate to issues regarding spatial summation across dermatomes and to adaptation level effects in pain, in which a strong painful experience serves as an anchor or comparison point by which others are judged. The psychophysical findings provide a perceptual foundation for clinical phenomena in which patients face with comorbid pain disorders.
-
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. ⋯ During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.