Sportverletzung Sportschaden : Organ der Gesellschaft für Orthopädisch-Traumatologische Sportmedizin
-
Sportverletz Sportschaden · Mar 2015
[The assessment of biological maturation for talent selection - which method can be used?].
The biological maturity status plays an important role in sports, since it influences the performance level and the talent selection in various types of sport. More mature athletes are favorably selected for regional and national squads. Therefore, the biological maturity status should be considered during the talent selection process. In this context, the relative age effect (RAE), which exists when the relative age quarter distribution of selected sports groups shows a biased distribution with an over-representation of athletes born in the first months after the specific cut-off-date for the competition categories, represents another problem in the talent development. From an ethical point of view, discrimination of young talented kids does exist: the relatively younger athletes have little to no chance of reaching the elite level, despite their talents and efforts. The causal mechanisms behind the RAE are still unclear and have to be assessed. In this context, the biological maturation seems to be a possible influential factor for the existence of a RAE in sport, which has to be examined. Several methods for estimating the biological maturity status exist; however, they are often expensive and not practicable. Consequently, the aim of the present study was to assess the concordance of a simple, yet accurate method of estimating biological maturation (prediction equation of age at peak height velocity, APHV) of Mirwald and co-workers, and the gold standard method of estimating skeletal age (SA, the x-ray of the left wrist). ⋯ The prediction equations to determine APHV seem to be a valid method of assessing the biological maturity status of youths aged 10 - 13 years. The percentage of pupils classified as on time, early or late maturing did not differ significantly between the classifications based on the two methods. Also the Bland-Altman analysis proved the concordance between the two methods. The RAE could be influenced and strengthened by the biological age in sports in which advantages in maturity parameters are important. Athletes born early in the selection year, who are also at the same time advanced in maturity, might be advantaged in the selection process. However, since the prediction equations seem to be valid, this method can be used in the future in the talent selection process in order to not disadvantage late-maturing athletes, which in turn could result in the reduction of the occurrence of the RAE in various types of sports in the future. In talent selection processes the growth spurt and the implemented changes in proportions between core and the extremities are often not considered; although it was shown that during this period, athletes showed poor performances in physical fitness. Since physical fitness is an important criterion in talent selection processes, athletes who go through their individual peak growth spurt at the time of selection have disadvantages due to the diverse proportions. As a consequence, it seems important to know the athlete's APHV in order to consider the variations in physical performance caused by developmental changes. The prediction equations to determine APHV include the leg length and sitting height in order to consider the diverse proportions between core and extremities; hence, this method seems to be accurate and should be implemented in the talent selection process.