Journal of internal medicine
-
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. ⋯ Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
-
Primary hyperparathyroidism (PHPT), due to parathyroid tumours, may occur as part of a complex syndrome or as an isolated (nonsyndromic) disorder, and both forms can occur as familial (i.e. hereditary) or nonfamilial (i.e. sporadic) disease. Syndromic PHPT includes multiple endocrine neoplasia (MEN) types 1 to 4 (MEN1 to MEN4) and the hyperparathyroidism-jaw tumour (HPT-JT) syndrome. Syndromic and hereditary PHPT are often associated with multiple parathyroid tumours, in contrast to sporadic PHPT, in which single parathyroid adenomas are more common. ⋯ Nonsyndromic PHPT, which may be hereditary and referred to as familial isolated hyperparathyroidism, may also be due to MEN1, CDC73 or calcium-sensing receptor (CASR) mutations. In addition, ~10% of patients presenting below the age of 45 years with nonsyndromic, sporadic PHPT may have MEN1, CDC73 or CASR mutations, and overall more than 10% of patients with PHPT will have a mutation in one of 11 genes. Genetic testing is available and of value in the clinical setting, as it helps in making the correct diagnosis and planning the management of these complex disorders associated with parathyroid tumours.
-
Pheochromocytoma and paraganglioma (PPGL) are rare diseases but are also amongst the most characterized tumour types. Hence, patients with PPGL have greatly benefited from precision medicine for more than two decades. According to current molecular biology and genetics-based taxonomy, PPGL can be divided into three different clusters characterized by: Krebs cycle reprogramming with oncometabolite accumulation or depletion (group 1a); activation of the (pseudo)hypoxia signalling pathway with increased tumour cell proliferation, invasiveness and migration (group 1b); and aberrant kinase signalling causing a pro-mitogenic and anti-apoptotic state (group 2). ⋯ Future new developments in precision medicine for PPGL will mainly focus on further identification of driver mechanisms behind both disease initiation and malignant progression. Identification of novel druggable targets and prospective validation of treatment options are eagerly awaited. To achieve these goals, we predict that collaborative large-scale studies will be needed: Pheochromocytoma may provide an example for developing precision medicine in orphan diseases that could ultimately aid in similar efforts for other rare conditions.