Journal of internal medicine
-
Comparative Study
Association between levels of pentraxin 3 and incidence of chronic kidney disease in the elderly.
Higher levels of the novel inflammatory marker pentraxin 3 (PTX3) predict cardiovascular mortality in patients with chronic kidney disease (CKD). Yet, whether PTX3 predicts worsening of kidney function has been less well studied. We therefore investigated the associations between PTX3 levels, kidney disease measures and CKD incidence. ⋯ Higher PTX3 levels are associated with lower GFR and independently predict incident CKD in elderly men and women. Our data confirm and extend previous evidence suggesting that inflammatory processes are activated in the early stages of CKD and drive impairment of kidney function. Circulating PTX3 appears to be a promising biomarker of kidney disease.
-
In Parkinson's disease (PD), the main pathology underlying the motor symptoms is a loss of nigrostriatal dopaminergic neurons. Clinical trials of intrastriatal transplantation of human foetal mesencephalic tissue have shown that the grafted dopaminergic neurons re-innervate the striatum, restore striatal dopamine release and, in some cases, induce major, long-lasting improvement of motor function. However, nonmotor symptoms originating from degeneration outside the striatum or in nondopaminergic systems are not alleviated by intrastriatal implantation of dopaminergic neurons. ⋯ In addition, dopaminergic neurons derived from human induced pluripotent stem cells are being considered for clinical translation. Important challenges include the demonstration of potency (growth capacity and functional efficacy) and safety of the generated dopaminergic neurons in preclinical animal models. The dopaminergic neurons should subsequently be tested, using optimal patient selection and cell preparation and transplantation procedures, in controlled clinical studies.
-
The introduction of targeted biological therapies has revolutionised the management of immune-mediated inflammatory diseases (IMIDs) such as rheumatoid arthritis, ankylosing spondylitis, psoriasis and inflammatory bowel disease. Following treatment with these therapies, many patients experience significant improvements in different aspects of their disease, including symptoms, work productivity and other outcomes relevant for individuals and society. However, due to the complexity of biological drug development and manufacturing processes, the costs of these therapies are relatively high. ⋯ While the potential pharmacoeconomic benefits of cost-effective biosimilars seem clear, several issues have been raised regarding, for example, the definition of biosimilarity and the validity of indication extrapolation, as well as the 'switchability' and relative immunogenicity of biosimilars and their reference drugs. In this review, these issues will be discussed with reference to CT-P13, a biosimilar of the anti-tumour necrosis factor monoclonal antibody infliximab, which is approved in Europe and elsewhere for the treatment of various IMIDs. Other important issues, including those related to data collection during nonclinical and clinical development of biosimilars, are also discussed.
-
Regulatory T cells (Tregs) are considered atheroprotective, and low levels have been associated with the acute coronary syndrome (ACS), particularly non-ST elevation (NSTE)-ACS. However, the functional properties as well as homeostasis of Tregs are mainly unknown in coronary artery disease (CAD). Here, we investigated the composition and functional properties of naïve (n) and memory (m)Tregs in patients with NSTE-ACS and in patients 6-12 months post-ACS. ⋯ Our results demonstrate a functional and homeostatic Treg defect in patients with NSTE-ACS and also in stabilized patients 6-12 months after ACS. Moreover, this defect was associated with a subclinical proinflammatory and atherogenic state. We believe that the failure to preserve Treg function and homeostasis reflects a need for immune-restoring strategies in CAD.
-
Acute promyelocytic leukaemia (APL), the M3 subtype of acute myeloid leukaemia, was once a lethal disease, yet nowadays the majority of patients with APL can be successfully cured by molecularly targeted therapy. This dramatic improvement in the survival rate is an example of the advantage of modern medicine. APL is characterized by a balanced reciprocal chromosomal translocation fusing the promyelocytic leukaemia (PML) gene on chromosome 15 with the retinoic acid receptor α (RARα) gene on chromosome 17. ⋯ Here, we provide an insight into the pathogenesis of APL and the mechanisms underlying the respective roles of ATRA and ATO. In addition, treatments that lead to more effective differentiation and apoptosis of APL cells, including leukaemia-initiating cells, and more thorough eradication of the disease will be discussed. Moreover, as a model of translational research, the development of a cure for APL has followed a bidirectional approach of 'bench to bedside' and 'bedside to bench', which can serve as a valuable example for the diagnosis and treatment of other malignancies.